VPDES PERMIT FACT SHEET

This document gives pertinent information concerning the reissuance of the VPDES permit listed below. This permit is being processed as a minor, municipal permit. The effluent limitations contained in this permit will maintain the Water Quality Standards of 9 VAC 25-260 et seq. The discharge results from the operation of a sewage treatment plant at a private school. This permit action consists of updating the permit to reflect changes in the Water Quality Standards, Guidance Memos, and the VPDES Permit Manual. SIC Code: 8211.

0211		
1.	Facility Name: Address:	Blessed Sacrament – Huguenot Academy 2501 Academy Road Powhatan, VA 23139
	Location	2501 Academy Road Powhatan, VA 23139
2.	Permit Number Existing Permit Expiration Date:	VA0063037 December 25, 2008
3.	Owner Contact Name: Title: Telephone No:	Mr. James Fortune President 804-598-4211
4.	Application Complete Date: Permit Drafted By: Reviewed By: Reviewed By:	July 31, 2008 Jaime Bauer, Piedmont Regional Office Tamira Cohen Date: September 8, 2008 Curt Linderman Date: November 3, 2008
	Public Notice Name of Paper: Dates:	Powhatan Today First Publication Date: November 19, 2008 Second Publication Date: November 26, 2008

5. SCC Certification Verification as required by Section 62.1-44.15:3 of the State Water Control Law: Applies only to privately owned treatment works that treat sewage generated by private residences.

November 19, 2008 through December 19, 2008

Public Comment Period:

30-Day, 5-Year Low Flows:

30-Day, 10-Year Low Flows:

6. **Financial Assurance/Closure as required by 9 VAC 25-650-10:** Applies only to privately owned treatment works that treat sewage generated by private residences with design flows between 1,000 gpd and 40,000 gpd. This facility is a private school not a residence; therefore, financial assurance is not required.

	gpd and 40,000 gpd. This facility is a priva is not required.	ate school not a residence; therefore, financial assurance	
7.	Receiving Stream Name: Basin:	Unnamed Tributary of Branch Creek James River (Middle)	
	Section:	10a	
	Class:	III	
	Special Standards:	PWS – This discharge is approximately 18.9 miles upstream of the Henrico Regional water treatment plant raw water intake on the James River.	
	River Mile:	2-XJG000.19	
	7-Day, 10-Year Low Flows:	0 MGD 0 cfs	
	1-Day, 10-Year Low Flows:	0 MGD 0 cfs	

0

0

MGD

MGD

0

0

cfs

cfs

7-Day, 10-Year High Flows:	0	MGD	0	cfs		
1-Day, 10-Year High Flows:	0	MGD	0	cfs		
30-Day, 10-Year High Flows:	0	MGD	0	cfs		
1-Q30 Flows	0	MGD	0	cfs		
Harmonic Mean Flow:	0	MGD	0	cfs		
Tidal:	No					
On 303(d) List:	No					
See Flow Frequency Memo August 12, 2008	(Attach	nment 1)				
Operator License Requirements:	No operator is currently required. However, upon					
(9 VAC 25-790-300)	facility upgrade Class IV operator is required.		v operator is required.			
Reliability Class:		Class II. The facility will be required to meet a Reliability Class I upon facility upgrade.				
(9 VAC 25-790-70)	Class I upon facility upgrade.		naue.			
Permit Characterization:						
X Private Federal	State	_ POTV	V <u>X</u>	PVOTW		
Possible Interstate Effect		Interim	Limits in	Other Document		

Table 1: Wastewater Flow and Trea	atment
-----------------------------------	--------

Outfall Number	Discharge Source	Treatment	Flow Design Capacity	
001	Private (Catholic) School	Stabilization Lagoon	0.004 MGD	

(See Attachment 2 for facility diagram)

8.

9.

10.

11.

The facility is currently operating as a no discharge lagoon. If and when a discharge occurs, the facility must meet the effluent limitations outlined in Part I.A of the permit. It is assumed that the current treatment system, a stabilization lagoon, will not consistently produce an effluent that complies with all the limitations in Part I.A., and chlorination, dechlorination, and post aeration systems will have to be provided. Therefore, if discharge occurs, new treatment facilities will be needed. As indicated in the appropriate special condition, the upgraded facility will require a certified operator and will have to be constructed to meet stated reliability requirements. Construction of treatment facilities will not require modification of the permit as long as the design capacity of the upgrade is 4,000 gallons per day or less. In a letter dated July 24, 2008, which included supplemental application information, Mr. James Fortune indicated that the facility has received approval from the DEQ OWE for installation of a UV treatment system in case of an overflow of the lagoon. They now believe a more energy efficient option is to install a chlorination (tablet) feed system followed by a de-chlorination feed system. Updated design plans are being prepared for submittal to the DEQ. This permit contains chlorine limitations and monitoring that will be applicable to the new system. It is assumed that discharge will be continuous once an initial discharge occurs.

12. Sewage Sludge Use or Disposal:

The sludge is stored in the lagoon, and the lagoon has not had to be pumped. When sludge disposal is necessary, the school has made arrangements to have it pumped and hauled to Powhatan County Dutoy Creek WWTP, according to the sludge application.

13. Discharge Location Description:

The facility discharges to an unnamed tributary of Branch Creek. See Attachment 3 for the Powhatan Quadrangle topographic map, 128C.

14. Material Storage:

No materials currently stored on site. A special condition has been included in the permit requiring proper storage of materials when applicable.

- Ambient Water Quality Information: Due to the intermittent nature of the tributary, wastewater residing within the lagoon were sampled to satisfy the data requirement in the Form 2A application and were used as ambient water quality data for wasteload calculations and permit limitation development per the advice of J. Palmore, Senior Environmental Engineer Planning Staff.
- 16. Antidegradation Review & Comments: Tier 1 X Tier 2 Tier 3

 The State Water Control Board's Water Quality Standards includes an antidegradation policy (9 VAC 25-260-30). All state surface waters are provided one of three levels of antidegradation protection. For Tier 1 or existing use protection, existing uses of the water body and the water quality to protect these uses must be maintained. Tier 2 water bodies have water quality that is better than the water quality standards. Significant lowering of the water quality of Tier 2 waters is not allowed without an evaluation of the economic and social impacts. Tier 3 water bodies are exceptional waters and are so designated by regulatory amendment. The antidegradation policy prohibits new or expanded discharges into exceptional waters.

The antidegradation review begins with a Tier determination. The receiving stream, an UT to Branch Creek, is considered to be a Tier 1 water body because it is a dry ditch. This determination is based on the intermittent nature of the stream where beneficial uses cannot be fully attained. The unnamed tributary was not assessed during the 2006 or draft 2008 305(b)/303(d) Water Quality Assessments and the waters are therefore considered Category 3A.

- 17. Site Inspection: By: Jaime Bauer on December 9, 2008. (See Attachment 5)
- 18. Effluent Screening & Limitation Development:

EFFLUENT BASIS CHARACTERISTICS FOR		DISCHARGE LIMITATIONS						
CHARACTERISTICS	LIMITS	MONTHLY AVERAGE		WEEKLY AVERAGE		MIN	MAX	
Flow (MGD)	NA	NL		NA		NA	NL	
pH (standard units)	1,2	NA		NA		6.0	9.0	
BOD ₅	1, 2	30 mg/L	450 g/d	45 mg/L	680 g/d	NA	NA	
TSS	2	60 mg/L	910 g/d	90 mg/L	1400 g/d	NA	NA	
TRC	1	0.0080 mg/L		0.0098 mg/L		NA	NA	
Dissolved Oxygen	1	NA			NA	5.0 mg/L	NA	
Ammonia as N (final)	1	5.4 mg/L		5.4 mg/L		NA	NA	
E. coli	3	126 Geometric Mean		NA		NA	NA	

1. Water Quality Based Limit 2. Federal Effluent Guideline 3. Other

Permit limitation development for toxic pollutants began with obtaining flow frequency and stream data from the DEQ water planning staff. Since the facility will potentially discharge to an intermittent stream where the effluent is the stream, 100% mix was assumed and used in the MSTRANTI spreadsheet. As previously indicated, the facility has not had a discharge; therefore, there is no effluent data available for use in computing effluent limitations. Water quality data of pH from samples obtained from wastewater residing in the lagoon and submitted with the Form 2A application was used in limitation development in lieu of effluent data. A temperature of 28°C was assumed and used for effluent temperature since no effluent temperature was available. This is believed to be a conservative assumption based data from similar facilities. The mixing

ratios, Form 2A data, stream data, and flow frequencies were entered into the MSTRANTI spreadsheet to calculate Wasteload Allocations (WLA). Hardness for both stream and effluent data fields in MSTRANTI was assumed to be 25 mg/L based on a conservative best professional judgment since no other data was available. See Attachment 4 for permit limitation development documents.

pH: A pH range of 6.0 – 9.0 Standard Units is assigned to all Class III waters per the Virginia Water Quality Standards, 9 VAC 25-260-50 and federal effluent limit guidelines for secondary treatment (40 CFR 133.102).

Limitation Determination for Biological Oxygen Demand (BOD₅) and Total Suspended Solids (TSS) for Waste Stabilization Ponds: Section MN-2 of VPDES Permit Manual was used to determine the applicable permit limitations. BOD₅ and TSS data from samples obtained from wastewater residing in the lagoon that was submitted with the application are below:

	Application Sample 1	Application Sample 2	
BOD5	21.5	144.0	
TSS	107.6	117.0	

It is the best professional judgment of staff that the facility will be capable of meeting secondary limitations for BOD_5 . In order to meet the ammonia limitation of 4.5 mg/L, the facility will need to install treatment such as aeration which will facilitate the facility being able to meet the secondary BOD_5 standard of 30 mg/L. In addition, the July 15, 1997 Stream Sanitation Analysis (Attachment 7) prescribes a BOD5 limitation of 30 mg/L to protect water quality. However, staff does not believe the facility will be able to meet the secondary standards for TSS. Following the flow chart for TSS limitation determination, facilities using waste stabilization ponds for treatment that cannot meet TSS limitations of 30 mg/L or 45 mg/L are to be assigned equivalent to secondary standards of 60 mg/L monthly average if located east of the Blue Ridge Mountains. Secondary limits and equivalent secondary limits are based on the federal effluent limit guidelines for secondary treatment (40 CFR 133).

Total Residual Chlorine (TRC): A limitation evaluation was conducted for TRC. The chronic and acute WLAs were calculated using the MSTRANTI Excel Spreadsheet. Acute and chronic WLA for TRC were calculated as 0.0019 mg/L and 0.0011 mg/L, respectively. Following the procedures in GM 00-2011, since the WLAa was less than 4.0 mg/L, the actual WLA were entered into STATS.exe to determine the need for a permit limitation and calculate the limitation. A quantification level of 0.10 mg/L and a data point of 20 mg/L were used as recommended by the VPDES permit manual. The evaluation produced recommended limitations of 0.0080 mg/L for average monthly and 0.0098 mg/L for average weekly in order to protect water quality (See Attachment 4).

Dissolved Oxygen (DO): Based on the July 15, 1977 Memorandum. See Attachment 7. The minimum DO criteria for class III waters in the Virginia Water Quality Standards (WQS) is 5.0 mg/L.

Ammonia: A limitation evaluation was conducted for ammonia using the MSTRANTI Excel Spreadsheet to calculate acute and chronic WLAs. The WLAs are entered in to the STATS.exe computer application to determine the need for a permit limitation and calculate the limitation. Acute and chronic WLAs of 45 mg/L and 2.7 mg/L, respectively, were entered into STATS.exe with a quantification level of 0.20 mg/L. The procedures established in Virginia DEQ Guidance Memo 00-2011 recommend inputting a single datum point of 9.0 mg/L into the program. The evaluation resulted in a recommended permit weekly and monthly average limitation of 5.4 mg/L. See Attachment 4.

E. coli: The facility received an E. coli wasteload allocation of 6.96E+9 cfu/yr in the James River and Tributaries –Lower Piedmont Region TMDL report. The wasteload allocation is based on the facility's permitted flow of 0.004 MGD and an E. coli count of 126 N/100 mL. The frequency of 2 per Month requires that each sample be separated by at least 7 days.

19. Basis for Sludge Use & Disposal Requirements:

A sludge management plan for the pump and haul disposal of sludge from this facility is required

according to 9 VAC 25-31-100 P. At present, sludge has never been removed from the lagoon. However, the facility has arranged for sludge disposal at the Powhatan County Dutoy Creek WWTP when necessary. Therefore, No sludge monitoring or limitations apply to this facility.

20. Antibacksliding Statement:

9VAC 25-31-220.L and DEQ Guidance Memo 00-2011 do not allow re-issued permits to contain a less stringent water-quality based effluent limitation, unless under certain specified exceptions. All limitations are at least as stringent as in the previous permit with the exception of ammonia.

In the previous permit issuance, an effluent temperature of 32°C was assumed. However, based on data from similar operating lagoon systems located in the same geographic region, it is more appropriate to assume an effluent temperature of 28°C. Since new information is available that was not available at the time the permit was previously issued, backsliding is not occurring.

21. Special Conditions:

B. Additional Chlorine Limitations and Monitoring Requirements

Rationale: Required by VA Water Quality Standards, 9 VAC 25-260-170 Bacteria: other waters. Also, 40 CFR 122.41(e) requires the permittee, at all times, to properly operate and maintain all facilities and systems of treatment in order to comply with the permit. This ensures proper operation of chlorination equipment to maintain adequate disinfection.

C.1. 95% Capacity Reopener

Rationale: Required by VPDES Permit Regulation, 9 VAC 25-31-200 B 2 for all POTW and PVOTW permits.

C.2. CTC, CTO Requirement

Rationale: Required by Code of Virginia §62.1-44.19; Sewage Collection and Treatment Regulations, 9 VAC 25-790.

C.3. O&M Manual Requirement

Rationale: Required by Code of Virginia § 62.1-44.19; Sewage Collection and Treatment Regulations, 9 VAC 25-790; VPDES Permit Regulation, 9 VAC 25-31-190 E.

C.4. Materials Handling/Storage

Rationale: 9 VAC 25-31-50 A. prohibits the discharge of any wastes into State waters unless authorized by permit. Code of Virginia Section §62.1-44.16 and §62.1-44.17 authorizes the Board to regulate the discharge of industrial waste or other waste.

C.5. Licensed Operator Requirement

Rationale: The VPDES Permit Regulation, 9 VAC 25-31-200 C. and the Code of Virginia § 54.1-2300 et seq, Rules and Regulations for Waterworks and Wastewater Works Operators (18 VAC 160-20-10 et seq.), require licensure of operators. Since the facility does not discharge, no licensed operator is required until the upgrade is complete.

C.6. Reliability Class

Rationale: Required by Sewage Collection and Treatment Regulations, 9 VAC 25-790 for all municipal facilities. The facility is being required to meet a reliability class II. Upon upgrade, the facility is required to meet a reliability class I.

C.7. Sludge Reopener

Rationale: Required by VPDES Permit Regulation, 9 VAC 25-31-220 C.4 for all permits issued to treatment works treating domestic sewage.

C.8. TMDL Reopener

Rationale: Section 303(d) of the Clean Water Act requires that total maximum daily loads (TMDLs) be developed for streams listed as impaired. This special condition is to allow the permit to be reopened if necessary to bring it into compliance with any applicable TMDL approved for the receiving stream. The re-opener recognizes that, according to section 402(o)(1) of the Clean Water Act, limits and/or conditions may be either more or less stringent than those contained in this permit. Specifically, they can be relaxed if they are the result of a TMDL, basin plan, or other wasteload allocation prepared under section 303 of the Act. This reopener is included in all permits.

C.9. Compliance Reporting

Rationale: Authorized by VPDES Permit Regulation, 9 VAC 25-31-190 J 4 and 220 I. This condition is necessary when pollutants are monitored by the permittee and a maximum level of quantification and/or a specific analytical method is required in order to assess compliance with a permit limit or to compare effluent quality with a numeric criterion. The condition also establishes protocols for calculation of reported values.

C.10. Sludge Use and Disposal

Rationale: VPDES Permit Regulation, 9 VAC 25-31-100 P; 220 B 2; and 420 through 720, and 40 CFR Part 503 require all treatment works treating domestic sewage to submit information on sludge use and disposal practices and to meet specified standards for sludge use and disposal.

C.11. Ground Water Monitoring Plan

Rationale: Facilities consisting of lagoons for treatment must perform ground water monitoring to ensure protection of ground water standards. A groundwater monitoring plan was approved December 12, 1995 and revised January 16, 2007. The facility will continue to monitor ground water to ensure that the systems integrity is being maintained and to indicate if activities at the site are resulting in violations of the State Water Control Board's standards. The approved plan is an enforceable part of the permit. Any changes to the plan must be submitted for approval to the Piedmont Regional Office.

Evaluation of groundwater data is included in Attachment 6. Significant differences between up gradient and down gradient wells were observed for some parameters as well as exceedances of the ground water standards. A corrective action plan is being required to address these issues.

Monitoring shall remain on a quarterly basis and results shall be submitted to the DEQ, Piedmont Regional Office, on 10th of the month the following the monitoring quarter. (See Attachment 6 for Ground Water Monitoring Data Evaluation)

C.12. Special Monitoring

Rationale: Required to collect operational data for influent flow and water surface elevation to ensure a "no discharge" status or indicate a potential discharge event.

Part II, Conditions Applicable to All Permits

Rationale: VPDES Permit Regulation, 9 VAC 25-31-190 requires all VPDES permits to contain or specifically cite the conditions listed.

22. Changes to the Permit:

Permit Cover Page:			
Item RATIONALE			
Initial paragraph	Updated language to reflect current agency guidance that incorporates the permit application as part of the permit.		

Outfall No.	Parameter Changed	Monitoring Requirement Changed		Effluent Limits Changed		Reason for Change	Date		
		From	То	From	То				
	BOD ₅			0.5 kg/d 0.68 kg/d	450 g/d 680 g/d	Loading limitations converted from			
	TSS			0.91 kg/d 1.4 kg/d	910 g/d 1400 g/d	units of kg/d to g/d in accordance with GM06-2016.	8/08		
	Ammonia	-	-	4.5 mg/L	5.4 mg/L	Evaluation of ammonia indicated a change from the previously permitted limit to a less stringent limitation based on a revised effluent temperature assumption.	11/08		
	E. Coli	-	2/Month	-	126 N/ 100 mL	Bacteria limitation added in accordance with procedures for facilities with a TMDL allocation.	8/08		
FROM	то	RATION	RATIONALE						
Footnote (1)	potnote (1) Footnote (1) Updated language to reflect current agency guidance.								
-	Footnote (2)	(2) Added language to reflect current agency guidance.							
Footnote(2)	Footnote (3)	Revised	language to re	eflect current ag	ency guidance	and clarify TRC requirements.			
	Footnote (4)	Added la	nguage to refl	ect current age	ncy guidance.				
Part I.A.1.b	Part I.A.2	No Chan	ge						
Part I.A.1.c	Part I.A.3	No Chan	ge						
Part I.A.1.d	-	Remove	d. Incorporate	d into language	in Part I.A.1.				
-	Part I.A.4	Added la	nguage to refl	ect current age	ncy guidance.				
Special Cond	lition Changes:								
FROM	то	RATIONALE							
B.1	B.1		Additional Limitations and Monitoring Requirements: Revised to reflect agency guidance.						
B.2	Removed	results	Bacterial Limitations and Monitoring Requirements: The demonstration study results were superseded by the need to include an e-coli limitation in conformance with the bacteria TMDL permitting requirements.						
C.1	C.1	95% C	apacity Reop	ener: No Chanç	ge.				
	C.2	стс, с	TO Requirem	nent: New cond	ition. Added to	reflect current agency gui	dance.		
C.2	C.3	Operat	Operations and Maintenance Manual Requirement: Updated language to reflect current agency guidance.						
C.8	C.4	Materi	ale Handling/	Storage: No C	hanaa				

C.3	C.5	Licensed Operator Requirement: No Change.
C.4	C.6	Reliability Class: No Change.
C.6	C.7	Sludge Reopener: No Change.
	C.8	TMDL Reopener: New condition. Added to reflect current agency guidance.
C.7	C.9	Compliance Reporting: Updated language to reflect current agency guidance on compliance reporting and significant digits.
C.5	C.10	Sludge Use and Disposal: Updated language to reflect current agency guidance. Change also reflects transfer of the program from VDH to DEQ.
C.9	-	Treatment Works Closure Plan: Removed. Language no longer included in permits per current agency guidance.
C.10 and 11.	C.11	Ground Water Monitoring Plan: Updated language to reflect current agency guidance. Risk assessment and corrective action plan required due to results of the ground water monitoring analyses.
C.12	C.12	Special Monitoring: Language updated.

23. Variances/Alternate Limits or Conditions: None

24. Regulation of Users (9 VAC 25-31-280 B 9):

There are no industrial dischargers contributing to the treatment works.

25. Public Notice Information required by 9 VAC 25-31-280 B:

All pertinent information is on file and may be inspected, and copied by contacting:

Ms. Jaime Bauer at: Virginia DEQ Piedmont Regional Office 4949-A Cox Road Glen Allen, VA 23060 Telephone No. (804) 527-5015 Email Address: jlbauer@deq.virginia.gov

Persons may comment in writing or by email to the DEQ on the proposed permit action, and may request a public hearing, during the comment period. Comments shall include the name, address, and telephone number of the writer and of all persons represented by the commenter/requester, and shall contain a complete, concise statement of the factual basis for comments. Only those comments received within this period will be considered. The DEQ may decide to hold a public hearing, including another comment period, if public response is significant and there are substantial, disputed issues relevant to the permit. Requests for public hearings shall state 1) the reason why a hearing is requested; 2) a brief, informal statement regarding the nature and extent of the interest of the requester or of those represented by the requester, including how and to what extent such interest would be directly and adversely affected by the permit; and 3) specific references, where possible, to terms and conditions of the permit with suggested revisions. Following the comment period, the Board will make a determination regarding the proposed permit action. This determination will become effective, unless the DEQ grants a public hearing. Due notice of any public hearing will be given.

The public may review the draft permit and application at the DEQ Piedmont Regional Office by appointment.

26. Additional Comments:

a. Previous Board Action: None

b. Staff Comments:

- Permittees having exemplary operations that consistently meet permit requirements are
 considered for reduced monitoring per the VPDES Permit Manual and in accordance with
 EPA's "Interim Guidance for Performance-Based Reduction of NPDES Permit Monitoring
 Frequencies" (EPA 833-B-96-001). In order to qualify for reduced monitoring, a facility should
 not have been issued any Warning Letters, Notice of Violations, or Notices of Unsatisfactory
 Laboratory Evaluations, or be under any Consent Orders, Consent Decrees, Executive
 Compliance Agreements, or related enforcement documents during the past three years.
 There was no consideration given to reduced monitoring frequency since the facility has not
 had a discharge.
- The application was sent to the Virginia Department of Health as required by the VPDES Permit Manual. The response by VDH indicated that they did not object to the re-issuance of the permit. However, they requested a copy of the draft permit for review and comment, when available. VDH submitted a memo dated 11/20/2008 commenting that the Henrico Regional water treatment plant is approximately 18.9 miles downstream of the discharge point. No other comments were included.
- This facility is not subject to the General VPDES Watershed Permit Regulations for Total Nitrogen and Total Phosphorus Discharges and Nutrient Trading in the Chesapeake Bay Watershed in Virginia because the current flow of the facility is less than 40,000 gallons per day (non-tidal significant discharger), and the facility is not expanding. The facility does not have nutrient allocations because the facility is not considered a significant discharger of nutrients. However, the facility has a nutrient permitted design capacity of 227.8 pounds per year Total Nitrogen and 30.5 pounds per year Total Phosphorus, calculated based on secondary technology concentrations values and the current design capacity of 0.004 MGD.
- The permit expiration in this reissuance is being moved forward to the end of November to avoid conflict reissuance with holiday schedules at DEQ and the facility.
- After the public comment period ended, one change was made to correct a typographical error in the permit. In the 2nd sentence in Part I Condition C.6 regarding reliability class the phrase "to Operate" was added after "Certificate" for clarification.
- In an email received on December 19, 2008, Mr. Mark Smith from EPA Region 3 responded that EPA had no objection to the issuance of the permit.
- c. Public Comment: No comment received.

27. 303(d) Listed Segments (TMDL):

The facility discharges directly to an UT of Branch Creek that was not assessed during the 2006 or draft 2008 305(b)/303(d) Water Quality Assessments. However, the facility received an E. coli wasteload allocation of 6.96E+9 cfu/yr in the James River and Tributaries – Lower Piedmont Region TMDL report. The wasteload allocation is based on the facility's permitted flow of 0.004 MGD and an E. coli count of 126 N/100 mL. The permit includes an effluent E. coli limitation of 126 N/mL in order to meet the TMDL wasteload allocation.

28. Summary of Attachments:

- 1. Flow Frequency Memorandum
- 2. Facility Diagram
- 3. Topographic Map
- 4. Permit Limit Development
- 5. Site Visit Memorandum
- 6. Ground Water Monitoring Evaluation
- 7. Stream Sanitation Analysis July 15, 1977

Attachment 1 – Flow Frequency Memorandum

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office 4949 A Cay Pand Clan Allan Vinginia 23060

4949-A Cox Road Glen Allen, Virginia 23060

SUBJECT:

Flow Frequency Determination / 303(d) Status

Blessed Sacrament – Huguenot Academy (VA0063037)

TO:

Jaime Bauer

FROM:

Jennifer V. Palmore, P.G.

DATE:

August 12, 2008

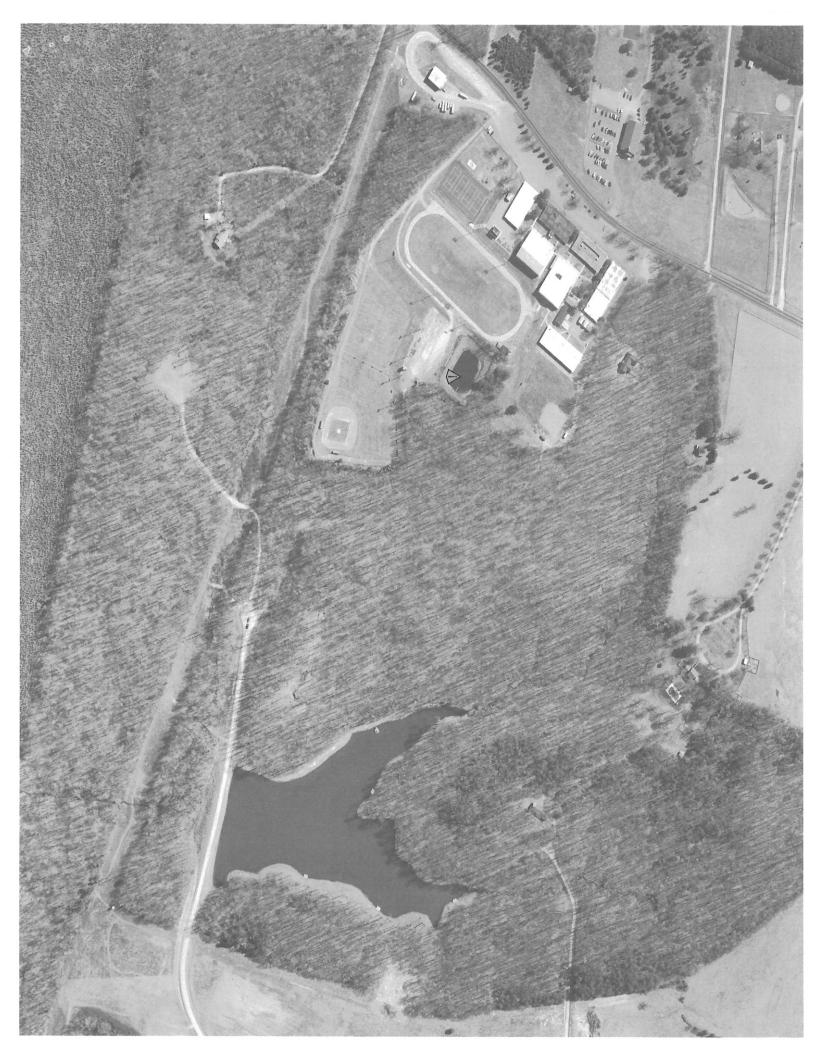
COPIES:

File

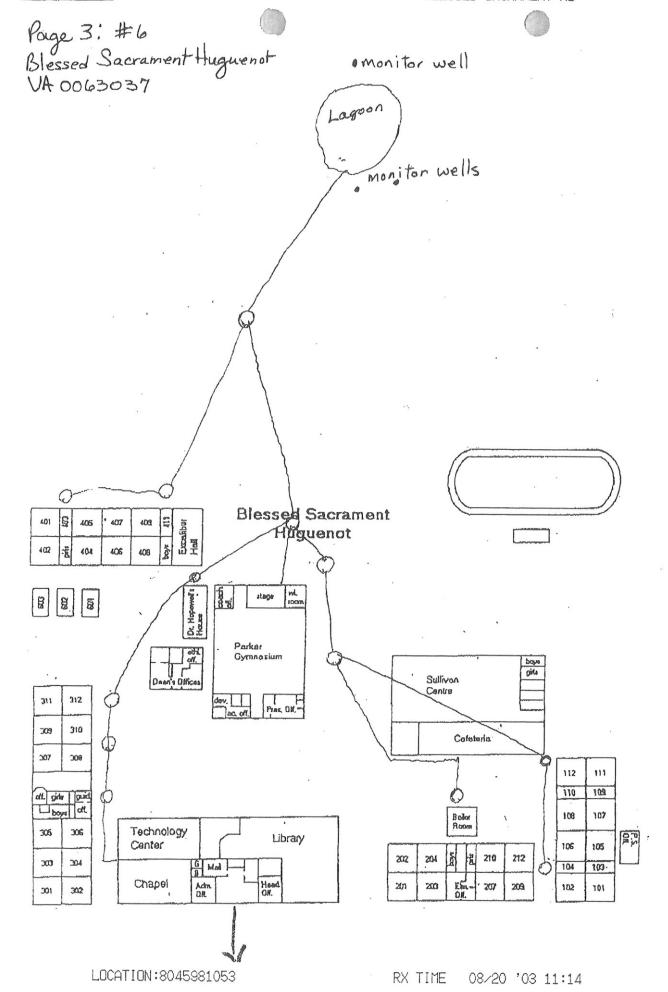
The Blessed Sacrament – Huguenot Academy's sewage treatment plant discharges to an unnamed tributary of Branch Creek in Powhatan County, VA. The discharge is located at river mile 2-XJG000.19. Stream flow frequencies are required at this site for use by the permit writer in developing effluent limitations for the VPDES permit.

At the discharge point, the receiving stream is shown to be a dry ditch which drains to an intermittent stream, as shown on the USGS Powhatan Quadrangle topographic map. The flow frequencies for intermittent streams are shown below.

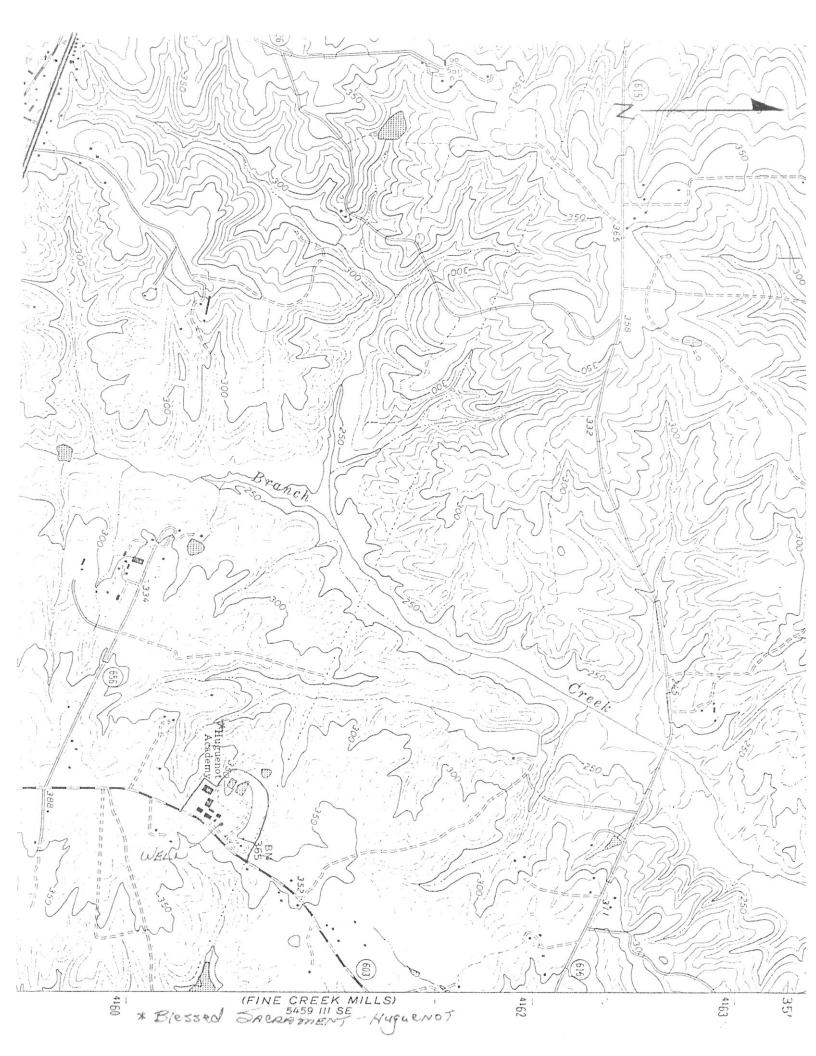
Unnamed tributary at discharge point:


1Q30 = 0.0 cfs	High Flow $1Q10 = 0.0$ cfs
1Q10 = 0.0 cfs	High Flow $7Q10 = 0.0 \text{ cfs}$
7Q10 = 0.0 cfs	High Flow $30Q10 = 0.0$ cfs
30Q10 = 0.0 cfs	HM = 0.0 cfs
30Q5 = 0.0 cfs	

Please note that the intermittent stream has been dammed as shown on the attached aerial photograph.


The receiving stream was not assessed during the 2006 or draft 2008 305(b)/303(d) Water Quality Assessment cycles, therefore the waters are considered Category 3A. However, although the stream is not considered impaired for the Recreation Use, the facility received a wasteload allocation in the TMDL report for the James River and Tributaries – Lower Piedmont Region. The wasteload allocation for Blessed Sacrament – Huguenot is 6.96E+09 E. coli cfu/year, which was based on a design flow of 0.004 MGD.

Due to the intermittent nature of the tributary, it is appropriate to use effluent data, rather than ambient stream data, when calculating permit limits.


If you have any questions concerning this analysis, please let me know.

Attachment 2 - Facility Diagram

Attachment 4 – Permit Limitation Development

MSTRANTI DATA SOURCE REPORT

VA0063037 -Blessed Sacrament - Huguenot Acadmey

Stream Information:	
Mean Hardness	
90% Temperature	Same as effluent as recommended by
90% Maximum pH	planning staff. See Flow Frequency Memo dated August 12, 2008 (Attachment 1).
10% Maximum pH	dated August 12, 2000 (Attachment 1).
Tier Designation	As advised by planning unit. See Flow Frequency Memo dated August 12, 2008 (Attachment 1).
Stream Flows:	
All Data	As advised by planning unit. See Flow Frequency Memo dated August 12, 2008 (Attachment 1).
Mixing Information:	
Flow Analysis	100% Mix because all flow is from effluent.
Effluent Information:	
Mean Hardness	BPJ. Effluent data not available. Used conservative assumption.
90% Temperature	The facility has not had a discharge, therefore no DMR data available. Based on data from similar operating lagoon systems located in the same geographic region, it is more appropriate to assume a conservative effluent temperature of 28°C.
90% Maximum pH	The facility has not had a discharge, therefore
10% Maximum pH	no DMR data available. The maximum and minimum pH reported on the Form 2A Section A.12 2 was used in place of the 90 th and 10 th percentiles, respectively, since data were limited.
Discharge Flow	Design Flow as reported in Permit Application Form 2A.

Temperature Data for Permit Development from Facilities with Lagoon Treatment

Permit Num.	Facility Name	Temp Used in Permit Development	Source of Temp
VA0020761	Jarratt STP	28	Permit Application
VA0020877	Northumberland High School	30	Unknown
VA0020885	Callao Shops & Apartments	25	Permit Application
VA0022934	Southside Elementary School	28	Assumption
VA0026891	Town of Warsaw	26.7	Permit Application
VA0027561	Children's Baptist Home	28.1	Permit Application
VA0027910	Manakin Farms	28	Assumption
VA0028291	Nottoway Hotel	28	Assumption
VA0028762	North Elementary School	27.6	Permit Application
VA0062669	Stony Creek	28.8	Permit Application
VA0060569	Windmill Park	29.1	Permit Application
VA000063649	Richmond Country Club WWTP	25	Assumption
VA0088480	Chickahominy WWTP	25	Assumption

11/12/2008 - 8:39 AM

FRESHWATER WATER QUALITY CRITERIA / WASTELOAD ALLOCATION ANALYSIS

Blessed Sacrament - Huguenot Academy Facility Name:

Permit No.: VA0063037

Receiving Stream:

UT to Branch Creek

Version: OWP Guidance Memo 00-2011 (8/24/00)

Stream Information		Stream Flows		Mixing Information		Effluent Information	
Mean Hardness (as CaCO3) =	25 mg/L	1Q10 (Annual) =	0 MGD	Annual - 1Q10 Mix =	100 %	Mean Hardness (as CaCO3) =	25 mg/L
90% Temperature (Annual) =	28 deg C	7Q10 (Annual) =	0 MGD	- 7Q10 Mix =	100 %	90% Temp (Annual) =	28 deg C
90% Temperature (Wet season) =	O geb	30Q10 (Annual) =	0 MGD	- 30Q10 Mix =	100 %	90% Temp (Wet season) =	O beb
90% Maximum pH =	6.664 SU	1Q10 (Wet season) =	0 MGD	Wet Season - 1Q10 Mix =	%	90% Maximum pH =	6.67 SU
10% Maximum pH =	6.616 SU	30Q10 (Wet season)	0 MGD	- 30Q10 Mix =	%	10% Maximum pH =	6.61 SU
Tier Designation (1 or 2) =	-	3005 =	0 MGD			Discharge Flow =	0.004 MGD
Public Water Supply (PWS) Y/N? =	>	Harmonic Mean =	0 MGD				
Trout Present Y/N? =	C	Annual Average =	0 MGD				
Early Life Stages Present Y/N? =	λ						

Parameter	Background		Water Qua	Water Quality Criteria			Wasteload	Wasteload Allocations		A	Antidegradation Baseline	in Baseline		Anti	Antidegradation Allocations	Allocations		_	Aost Limitir	Most Limiting Allocations	10
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	Ħ	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic	HH (PWS)	壬	Acute	Chronic HH (PWS)	H (PWS)	Ŧ	Acute	Chronic	HH (PWS)	H
Acenapthene	0	1	I	1.2E+03	2.7E+03	1		1.2E+03	2.7E+03	ı	1	1	1	1	1	1	1			1.2E+03	2.7E+03
Acrolein	0	ı	1	3.2E+02	7.8E+02	1	ı	3.2E+02	7.8E+02	ı	•	1	1	Ī	ı	1	1	1	:	3.2E+02	7.8E+02
Acrylonitrile ^c	0	1	1	5.9E-01	6.6E+00	ı	I	5.9E-01	6.6E+00		*	1	1	Ī	1	ī	ı	:	ı	5.9E-01	6.6E+00
Aldrin ^c Ammonia-N (ma/l)	0	3.0E+00	1	1.3E-03	1.4E-03	3.0E+00	1	1.3E-03	1.4E-03	1	1	I	1	ı	I	Ī	ı	3.0E+00	ı	1.3E-03	1.4E-03
(Yearly) Ammonia-N (mg/l)	0	4.53E+01	2.72E+00	I	I	4.5E+01	2.7E+00	1	-	1	ī	1	1	ī	1	ı	1	4.5E+01	2.7E+00	,	ı
(High Flow)	0	4.53E+01	6.48E+00	ı	1	4.5E+01	6.5E+00	1	1	ı	1	1	1	ı	ı	1	1	4.5E+01	6.5E+00	ı	;
Anthracene	0	ı	1	9.6E+03	1.1E+05	I	ı	9.6E+03	1.1E+05	ı	1		1	I	1	1	1	1	1	9.6E+03	1.1E+05
Antimony	0	L	1	1.4E+01	4.3E+03	ı	9	1.4E+01	4.3E+03	I	Ī	1	1	I	1	ı	1	ı	ı	1.4E+01	4.3E+03
Arsenic	0	3.4E+02	1.5E+02	1.0E+01	1	3.4E+02	1.5E+02	1.0E+01	-	ı	ï	•	1	1	1	ı	1	3.4E+02	1.5E+02	1.0E+01	1
Barium	0	ı	1	2.0E+03	ı	1		2.0E+03	-	1	1	1	1	I	1	1	1	1	:	2.0E+03	:
Benzene ^c	0	ı	1	1.2E+01	7.1E+02	1	1	1.2E+01	7.1E+02	1	ı	1	1	ı	1	1	1	;	1	1.2E+01	7.1E+02
Benzidine ^C	0	ı	ı	1.2E-03	5.4E-03	1		1.2E-03	5.4E-03	I	Ī	ı	1	1	1	1	1	ı	1	1.2E-03	5.4E-03
Benzo (a) anthracene ^c	0	1	1	4.4E-02	4.9E-01	1	***	4.4E-02	4.9E-01	I	1	1	1	ī	I	1	1	:	ı	4.4E-02	4.9E-01
Benzo (b) fluoranthene ^c	0	1	1	4.4E-02	4.9E-01	ı		4.4E-02	4.9E-01	1	1	1	1	I	ı	1	-	ı	ı	4.4E-02	4.9E-01
Benzo (k) fluoranthene ^c	0	1	1	4.4E-02	4.9E-01	ı	1	4.4E-02	4.9E-01	1	1	1	1	1	1	1	1	ı	ı	4.4E-02	4.9E-01
Benzo (a) pyrene ^c	0	I	I	4.4E-02	4.9E-01	ı	1	4.4E-02	4.9E-01	ı	1	1	1	1	1	1	1	1	1	4.4E-02	4.9E-01
Bis2-Chloroethyl Ether	0	I	I	3.1E-01	1.4E+01	ı	ı	3.1E-01	1.4E+01	1	1	1	-	ı	1	1	1	1	1	3.1E-01	1.4E+01
Bis2-Chloroisopropyl Ether	0	1	1	1.4E+03	1.7E+05	ı	1	1.4E+03	1.7E+05	1	1	ı	-	ı	I			į.	:	1.4E+03	1.7E+05
Bromoform ^C	0	I	I	4.4E+01	3.6E+03	1	1	4.4E+01	3.6E+03	1	1	1	1	1	1	1	1	1	1	4.4E+01	3.6E+03
Butylbenzylphthalate	0	1	1	3.0E+03	5.2E+03	ı	1	3.0E+03	5.2E+03	ı		ī	1	I	I	1	1	1	,	3.0E+03	5.2E+03
Cadmium	0	8.2E-01	3.8E-01	5.0E+00	1	8.2E-01	3.8E-01	5.0E+00	1	ı	1	í	1	1	ı	1	ı	8.2E-01	3.8E-01	5.0E+00	1
Carbon Tetrachloride ^c	0.	ı	1	2.5E+00	4.4E+01	ı	1	2.5E+00	4.4E+01	ı	1	1	1	I	ı	ı	ı	ı	1	2.5E+00	4.4E+01
Chlordane ^c	0	2.4E+00	4.3E-03	2.1E-02	2.2E-02	2.4E+00	4.3E-03	2.1E-02	2.2E-02	1			-	1	1	ı	1	2.4E+00	4.3E-03	2.1E-02	2.2E-02
Chloride	0	8.6E+05	2.3E+05	2.5E+05	1	8.6E+05	2.3E+05	2.5E+05	-	1	1	1	-	1	1	1	1	8.6E+05	2.3E+05	2.5E+05	:
TRC	0	1.9E+01	1.1E+01	1	1	1.9E+01	1.1E+01	1	-		ı	1	1	1	1	1	1	1.9E+01	1.1E+01	:	:
Chlorobenzene	0	1	***	6.8E+02	2.1E+04	-	I	6.8E+02	2.1E+04	0.0	1		1	1	1	ŧ		;	1	6.8E+02	2.1E+04

3.4E+02 2.9E+04 4.3E+03 4.0E+02

1.7E+03

1.2E+02

3.5E+02

표

Most Limiting Allocations Chronic HH (PWS) 4.1E+00

Acute

Ξ

Antidegradation Allocations Chronic HH (PWS)

王

2.9E+04 4.3E+03

4.0E+02

3.4E+02

Ξ

Wasteload Allocations Chronic HH (PWS) 4.1E+00 3.5E+02 .7E+03 1.2E+02

王

HH (PWS) Water Quality Criteria

Chronic

Background

4.1E+00

0

Chlorodibromomethane

ug/l unless noted)

neter

-Chloronaphthalen

Chloroform ^c

-Chlorophenol

Antidegradation Baseline Chronic HH (PWS) 4.9E-01

4.4E-02 1.3E+03

> 2.7E+00 5.2E+00

3.6E+00 2.2E+01

> 2.2E+05 8.4E-03 5.9E-03 5.9E-03

7.0E+02

5.2E+00

2.2E+01

2.2E+05

7.0E+02

2.2E+01

1.3E+03

2.7E+00 5.2E+00

4.4E-02

8.4E-03

8.3E-03 5.9E-03

5.9E-03 5.9E-03

5.9E-03

1.0E-03 1.0E-01

1.1E+00

2.7E+00

8.3E-03 5.9E-03 5.9E-03

> 1.0E-03 .0E-01

4.9E-01

4.4E-02 1.3E+03

1.0E+02

1.1E+01

1.6E+01 1.8E+02

.1E+01

Chromium, Total

Shrysene ^c

DDD c

Chromium VI

hromium III Chlorpyrifos

2.4E+01

1.8E+02 1.6E+01

4.1E-02 2.4E+01

4.3E+03 2.9E+04

> 1.7E+03 .2E+02

3.5E+02

4.9E-01 1.2E+04 1.6E+04 1.7E+04

4.4E-02

2.7E+03

1.2E+04

2.7E+03 4.4E-02

4.9E-01

libenz(a,h)anthracene ^c

Dibutyl phthalate Dichloromethane Methylene Chloride) ^c

,2-Dichlorobenzene 1,3-Dichlorobenzene ,4-Dichlorobenzene

1.0E+02

2.4E+01 1.1E+01

1.8E+02

1.6E+01

2.2E+05 8.4E-03

7.0E+02

8.3E-03

5.9E-03 5.9E-03

5.9E-03 5.9E-03 4.9E-01

4.4E-02 2.7E+03

1.0E-01 1.0E-03

1.1E+00

1.2E+04

1.6E+04

4.7E+01

2.6E+03 2.6E+03

1.7E+04

2.7E+03 4.0E+02 4.0E+02 1.4E+05

3.1E+02 7.0E+02 7.9E+02

9.3E+01 1.0E+02 3.9E+02

5.2E+00

1.7E+03 1.4E-03

1.0E+01 1.4E-03 2.3E+04

5.6E-02

2.4E-01

1.7E+03

1.2E+05

5.9E+01 2.3E+03 2.9E+06

1.4E-03

1.4E-03 2.3E+04 1.8E+01 5.4E+02 3.1E+05 2.7E+03

5.6E-02

1.4E-03

1.4E-03

5.6E-02

1.2E+05

2.3E+04 1.8E+01

5.9E+01

Di-2-Ethylhexyl Phthalate ^C

Diethyl Phthalate

Dieldrin ^c

2,4-Dimethylphenol

imethyl Phthalate

2.3E+03

5.4E+02

2.9E+06 1.2E+04

3.1E+05 2.7E+03

1.7E+03

3.9E+02

3.9E+02

9.3E+01

7.9E+02

.0E+02

1.0E+02 5.2E+00 1.0E+01 1.2E+04

1.4E+04 7.7E+02

7.0E+01

1.4E+04 7.65E+02

7.0E+01

1.3E+01 1.1E+00 1.2E-06 5.4E+00 2.4E+02

1.2E-06

1.2E-06 5.4E+00 2.4E+02 2.4E+02 2.4E+02 8.1E-01

1.2E-06

etrachlorodibenzo-p-dioxin)

(bdd

,2-Diphenylhydrazine

Alpha-Endosulfan

2-Methyl-4,6-Dinitrophenol

2,4-Dinitrotoluene ^C

lioxin (2,3,7,8-

Di-n-Butyl Phthalate

2,4 Dinitrophenol

4.0E-01

9.1E+01

1.1E+00

9.1E+01

1.3E+01

4.6E+02 9.9E+02 1.7E+04

5.6E+00 3.8E+00

7.7E-01

4.0E-01

7.7E-01

4.6E+02 9.9E+02 1.7E+04 1.4E+05 7.9E+02

5.6E+00

4.6E+02

5.6E+00 3.8E+00 3.1E+02 .0E+02 9.3E+01 1.0E+02 5.2E+00 1.0E+01

Dichlorobromomethane c

,2-Dichloroethane c

1,1-Dichloroethylene

3,3-Dichlorobenzidine^c

9.9E+02

7.7E-01

4.0E-01

3.8E+00

3.1E+02

1.7E+04 1.4E+05

,2-trans-dichloroethylene

4-Dichlorophenoxy ,2-Dichloropropane ,3-Dichloropropene

cetic acid (2,4-D)

,4-Dichlorophenol

2.6E+03 2.6E+03

1.0E+02

1.0E+02 4.0E-01

2.6E+03

2.7E+03

1.7E+04 2.6E+03

1.6E+04

4.7E+01 2.7E+03 4.0E+02 4.0E+02

4.7E+01

1.2E+05

5.9E+01 2.3E+03

1.8E+01 5.4E+02 2.9E+06

3.1E+05

1.4E+04

7.0E+01

7.7E+02

1.3E+01

9.1E+01

1.1E+00

1.2E+04

2.7E+03

2.4E+02

1.1E+02 1.1E+02

2.4E+02 2.4E+02 8.1E-01 8.1E-01

5.6E-02 5.6E-02

2.2E-01

2.2E-01

1.1E+02

7.6E-01

3.6E-02

8.6E-02

1.2E-06 5.4E+00

1.2E-06 4.0E-01

7.6E-01	MA 65:39 AM
;	11/12/2
:	
1	
1	
I	
1	
I	
1	er WLAs
1	- Freshwat
ı	(draft k).xls
8.1E-01	MSTRANTI
7.6E-01	VA0063037
1	
1	
8.1E-01	
7.6E-01	
0	
Endrin Aldehyde	page 2 of 4

8.1E-01

3.6E-02

8.6E-02

2.4E+02 2.4E+02

1.1E+02 1.1E+02 7.6E-01

5.6E-02

1.1E+02

5.6E-02

2.2E-01 2.2E-01

1.1E+02

5.6E-02

2.2E-01 2.2E-01

1.1E+02

5.6E-02

1.1E+02

7.6E-01

3.6E-02

3.6E-02

Endosulfan Sulfate

Endrin

4.0E-01

>
**
page 2 of 4

Parameter	Background		Water Qua	Water Quality Criteria			Wasteload Allocations	Allocations		A	Antidegradation Baseline	1 Baseline		Antic	Antidegradation Allocations	Ilocations	r	2	oet I imiting	Most Limiting Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	Chronic HH (PWS)	Ŧ	Acute	Chronic	Chronic HH (PWS)	王	Acute	Chronic HH (PWS)		Ŧ	Acute	Chronic HH (PWS)	(PWS)	Ŧ	Acute	Chronic	HH (PWS)	H
Ethylbenzene	0	. 1	-	3.1E+03	2.9E+04	***	,	3.1E+03	2.9E+04					1			1	1	-	3.1E+03	2.9E+04
Fluoranthene	0	ı	1	3.0E+02	3.7E+02	1	1	3.0E+02	3.7E+02	ı	1	1	1	ı	ı	1	***	1	ı	3.0E+02	3.7E+02
Fluorene	0	1	I	1.3E+03	1.4E+04	I.	I	1.3E+03	1.4E+04	1	ı	1	1	ı	1	1	1	1	:	1.3E+03	1.4E+04
Foaming Agents	0	1	1	5.0E+02	ı	ı		5.0E+02	I	I	I	ì	1	ı	1	1	}	1	1	5.0E+02	:
Guthion	0	1	1.0E-02	1	1	1	1.0E-02	I	ı	1	1	ī	1	ı	1	1	1	1	1.0E-02	1	;
Heptachlor C	0	5.2E-01	3.8E-03	2.1E-03	2.1E-03	5.2E-01	3.8E-03	2.1E-03	2.1E-03	90	1	1	1	ı	I	ı	-	5.2E-01	3.8E-03	2.1E-03	2.1E-03
Heptachlor Epoxide	0	5.2E-01	3.8E-03	1.0E-03	1.1E-03	5.2E-01	3.8E-03	1.0E-03	1.1E-03	1	1	1	1	1	1	1		5.2E-01	3.8E-03	1.0E-03	1.1E-03
Hexachlorobenzene	0	1	I	7.5E-03	7.7E-03	I	I	7.5E-03	7.7E-03	1	1	ı	1	1	1	1	1	:	1	7.5E-03	7.7E-03
Hexachlorobutadiene ^C	0	1	I	4.4E+00	5.0E+02	1	1	4.4E+00	5.0E+02	ī	1	ı	-	I	1	1	1	1	:	4.4E+00	5.0E+02
Hexachlorocyclohexane Alpha-BHC ^c Hexachlorocyclohexane	0	ı	Ī	3.9E-02	1.3E-01	ı	ľ	3.9E-02	1.3E-01	ı	I	I	1	1	1	1	1	:		3.9E-02	1.3E-01
Beta-BHC ^c	0	ı	1	1.4E-01	4.6E-01	1	1	1.4E-01	4.6E-01	1	1	1	1	1	ı	1	1	ı		1.4E-01	4.6F-01
Hexachlorocyclohexane Gamma-BHC ^c (Lindane)	0	9.5E-01	1	1.9E-01	6.3E-01	9.5E-01	I	1.9E-01	6.3E-01	Ĭ.	E		1	1	ī	1	1	9.5E-01	:	1.9E-01	6.3E-01
Hexachlorocyclopentadiene	0	1	ı	2.4E+02	1.7E+04	1	ī	2.4E+02	1.7E+04	ı	ı	1	1	1	1	1	***	1	ı	2.4E+02	1.7E+04
Hexachloroethane ^c	0	-	1	1.9E+01	8.9E+01	ı	ſ	1.9E+01	8.9E+01	I	ı	1	-	ı	1	1	1		1	1.9E+01	8.9E+01
Hydrogen Sulfide	0	1	2.0E+00	1	1	1	2.0E+00	1	**	ı	1	1		ı	1	I	1	- 5	2.0E+00	:	
Indeno (1,2,3-cd) pyrene ^c	0	1	1	4.4E-02	4.9E-01	1	***	4.4E-02	4.9E-01	1	1	1	1	1	į	ı	1	1	:	4.4E-02	4.9E-01
Iron	0	1	1	3.0E+02	ı	I	Ī	3.0E+02	I	1	1	1	-	1	1	-	1	1	1	3.0E+02	ı
Isophorone	0	ı	1	3.6E+02	2.6E+04	1	1	3.6E+02	2.6E+04	1	1	ı	1	ı	!	1	-	1	1	3.6E+02	2.6E+04
Kepone	0	1	0.0E+00		1	ı	0.0E+00	1	1	ı	į.	1	1	ı	ı	-	-	0 -	0.0E+00	1	1
Lead	0	2.0E+01	2.3E+00	1.5E+01	1	2.0E+01	2.3E+00	1.5E+01	1	1	1	I	-	1	1	1	1 2	2.0E+01 2	2.3E+00	1.5E+01	
Malathion	0	ı	1.0E-01	1	ı	I	1.0E-01		1	1	1	I	-	1	1	1	1		1.0E-01	1	:
Manganese	0	1	ľ	5.0E+01	ı	1	ı	5.0E+01	ı	ı	1	ı	-	ı	-	1		ı	1	5.0E+01	:
Mercury	0	1.4E+00	7.7E-01	5.0E-02	5.1E-02	1.4E+00	7.7E-01	5.0E-02	5.1E-02	ı	1	ı	1	I	1	1	-	1.4E+00 7	7.7E-01	5.0E-02	5.1E-02
Methyl Bromide	0	ı	1	4.8E+01	4.0E+03	1	ı	4.8E+01	4.0E+03	1	1	1	-	I		1	1	1	1	4.8E+01	4.0E+03
Methoxychlor	0		3.0E-02	1.0E+02	ı	I	3.0E-02	1.0E+02	ı	1	1	3	-		-	1	1	1	3.0E-02	1.0E+02	:
Mirex	0	ı	0.0E+00	1	1	ı	0.0E+00	ı	1	ı	Ĭ	1		ı	1	1	1	0	0.0E+00	1	;
Monochlorobenzene	0	1	ı	6.8E+02	2.1E+04	ı	I	E+02	2.1E+04	ı	ı	0.0		I	1	1	ı	ı	1	6.8E+02	2.1E+04
Nickel	0	5.6E+01	6.3E+00	6.1E+02	4.6E+03	5.6E+01	6.3E+00		4.6E+03	ı	I	I	1	1	1	1	.5	5.6E+01 6	6.3E+00	6.1E+02	4.6E+03
Nitrate (as N)	0	1	ı	1.0E+04	1	1	1		1	1	1	1	-	1	1	1	1	1	1	1.0E+04	1
Nitrobenzene	0	1	1	1.7E+01	1.9E+03	1	ı		1.9E+03	1	ı	ı	-	1	***	1	1	1	1	1.7E+01	1.9E+03
N-Nitrosodimethylamine	0	ı	1	6.9E-03	8.1E+01	I	I.		8.1E+01	1	1	1	-		1	1	1	:	1	6.9E-03	8.1E+01
N-Nitrosodiphenylamine	0	1	1	5.0E+01	1.6E+02	1	1		1.6E+02	1	1	***	-	ı	I	ı	1	1	1	5.0E+01	1.6E+02
N-Nitrosodi-n-propylamine	0	ı	1	5.0E-02	1.4E+01	1	1	5.0E-02	1.4E+01	1	1	1	-	1	ı	1	***		1	5.0E-02	1.4E+01
Parathion	0	6.5E-02	1.3E-02	I	ı	6.5E-02	1.3E-02	1	ı	I	1	1	-	1	ı	1	9	6.5E-02 1	1.3E-02	:	1
PCB-1016	0	1	1.4E-02	I	ı	ı	1.4E-02	ı	ı	1	1	-		1	ī	1	1		1.4E-02	ŧ	:
PCB-1221	0	1	1.4E-02	1	1	1	1.4E-02	I	ı	1	1	1	-	ı	E	ı	1	-	1.4E-02	ı	;
PCB-1232	0	I	1.4E-02	ı	ı	I	1.4E-02	1	1	1	1	1	1	ı	1	ı	1		1.4E-02	:	;
PCB-1242	0	ı	1.4E-02	I	ı	ł	1.4E-02	I	***	1	1	Ī	-	1	ı	1	1	-	1.4E-02	1	1
PCB-1248	0	1	1.4E-02	ı	ı		1.4E-02	I	1	ī	1	ï	-	I	ı		1	1	1.4E-02	1	1
PCB-1254	0	-	1.4E-02	1	1	1	1.4E-02	1	ı	1	1	1			1	I	-	1	1.4E-02	ı	1
PCB-1260	0	I	1.4E-02	1	1	1	1.4E-02	ı		1	1	1	-	1	1	1	-		1.4E-02	:	:
PCB Total	0	1	1	1.7E-03	1.7E-03	1	1	1.7E-03	1.7E-03	1	1	1	+	1	1				1	1.7E-03	1.7E-03

Parameter	Background		Water Qua	Water Quality Criteria			Wasteload	Wasteload Allocations		A	Antidegradation Baseline	n Baseline		Ant	Antidegradation Allocations	llocations		Σ	lost Limiting	Most Limiting Allocations	
(ug/l unless noted)	Conc.	Acute	Chronic	HH (PWS)	H	Acute	Chronic	HH (PWS)	Ŧ	Acute	Chronic HH (PWS)	H (PWS)	王	Acute	Chronic HH (PWS)	(PWS)	壬	Acute	Chronic	HH (PWS)	H
Pentachlorophenol ^c	0	5.9E+00	4.5E+00	2.8E+00	8.2E+01	5.9E+00	4.5E+00	2.8E+00	8.2E+01	,	1	1	1				1	5.9E+00		2.8E+00	8.2E+01
Phenol	0	ı	1	2.1E+04	4.6E+06	I	1	2.1E+04	4.6E+06	ı	1	1	1	ı	1	1	-	1	1	2.1E+04	4.6E+06
Pyrene	0	1	1	9.6E+02	1.1E+04	1	1	9.6E+02	1.1E+04	1	ı		1	1	1	1	1	:	:	9.6E+02	1.1E+04
Radionuclides (pCi/l except Beta/Photon)	0	1	1	I	1		ı	ı	1	I	ı	I	1	ı	1	ı	1	:	1	1	ı
Gross Alpha Activity Beta and Photon Activity	0	1	ı	1.5E+01	1.5E+01	1	1	1.5E+01	1.5E+01	1	ı	E	1	8	ı	1	ı	:	ı	1.5E+01	1.5E+01
(mrem/yr)	0	ı	1	4.0E+00	4.0E+00	ı	ı	4.0E+00	4.0E+00	1	i	1	ī	I	1	1	1	1	;	4.0E+00	4.0E+00
Strontium-90	0	1	1	8.0E+00	8.0E+00	ı	Mary .	8.0E+00	8.0E+00	E	ï	I	1	ı	1	1	1	1	1	8.0E+00	8.0E+00
Tritium	0	1	1	2.0E+04	2.0E+04	ı	ı	2.0E+04	2.0E+04	1	ı	I	1	1	1	1	1		:	2.0E+04	2.0E+04
Selenium	0	2.0E+01	5.0E+00	1.7E+02	1.1E+04	2.0E+01	5.0E+00	1.7E+02	1.1E+04	ı	1	1	ı	1	ı	1	- 2	2.0E+01	5.0E+00	1.7E+02	1.1E+04
Silver	0	3.2E-01	I	ı	ı	3.2E-01	ı	ı	1	1		1	1	1	1	1		3.2E-01	1	:	
Sulfate	0	1	I	2.5E+05	ı	I	ı	2.5E+05	1	I	1	I	1	1	1	1	-	:	1	2.5E+05	;
1,1,2,2-Tetrachloroethane ^c	0	1	1	1.7E+00	1.1E+02	ı	ı	1.7E+00	1.1E+02	ı		1	1	1	1	1	1	1	1	1.7E+00	1.1E+02
Tetrachloroethylene ^c	0	1	I	8.0E+00	8.9E+01	ı	1	8.0E+00	8.9E+01		1	I	1	I	E	1	1	1	1	8.0E+00	8.9E+01
Thallium	0	ı	1	1.7E+00	6.3E+00	1	1	1.7E+00 (6.3E+00	1	1	ı	1	1	1	1	1	1	1	1.7E+00	6.3E+00
Toluene	0	1	1	6.8E+03	2.0E+05	1	1	6.8E+03	2.0E+05	1	1	1	*****	1	1	1	-	1	1	6.8E+03	2.0E+05
Total dissolved solids	0	1	I	5.0E+05	ı	1	ı	5.0E+05		E	1	**	ı	ı	1	1	1	;	1	5.0E+05	:
Toxaphene ^c	0	7.3E-01	2.0E-04	7.3E-03	7.5E-03	7.3E-01	2.0E-04	7.3E-03	7.5E-03	1		ı	1	I	1	E	7	7.3E-01	2.0E-04	7.3E-03	7.5E-03
Tributyltin	0	4.6E-01	6.3E-02	I	1	4.6E-01	6.3E-02		1	0.00	1	1	1	1	1	1	4	4.6E-01	6.3E-02	1	:
1,2,4-Trichlorobenzene	0	1		2.6E+02	9.4E+02	I	1	2.6E+02	9.4E+02	I	1	1	1	1	1	1	1		;	2.6E+02	9.4E+02
1,1,2-Trichloroethane ^C	0	ı	-	6.0E+00	4.2E+02	ı	ı	6.0E+00 ²	4.2E+02	1	1.	1	1	1	ī	1	-		:	6.0E+00	4.2E+02
Trichloroethylene ^C	0	1	ı	2.7E+01	8.1E+02	1	1	2.7E+01 8	8.1E+02	ı		1	ı	ľ	ī	1	1	:	;	2.7E+01	8.1E+02
2,4,6-Trichlorophenol ^c	0	I	1	2.1E+01	6.5E+01	1	1	2.1E+01 6	6.5E+01	1	1	1	1	1	1		ı,	1	ľ	2.1E+01	6.5E+01
2-(2,4,5-Trichlorophenoxy) propionic acid (Silvex)	0	1	ı	5.0E+01	ı	1	1	5.0E+01	1	1		I	1	1	ř	1	I.	ı	1	5.0E+01	ı
Vinyl Chloride ^c	0	1	1	2.3E-01	6.1E+01	1	1	2.3E-01 6	6.1E+01		1			1	1	1	1	ı	1	2.3E-01	6.1E+01
Zinc	0	3.6E+01	3.6E+01	9.1E+03	6.9E+04	3.6E+01	3.6E+01	9.1E+03 6	6.9E+04	1	8	1	1	1		1		3.6E+01 3	3.6E+01	9.1E+03	6.9E+04

- 1. All concentrations expressed as micrograms/liter (ug/l), unless noted otherwise
- 2. Discharge flow is highest monthly average or Form 2C maximum for Industries and design flow for Municipals
- 3. Metals measured as Dissolved, unless specified otherwise
 - 4. "C" indicates a carcinogenic parameter
- 5. Regular WLAs are mass balances (minus background concentration) using the % of stream flow entered above under Mixing Information. Antidegradation WLAs are based upon a complete mix.
- 6. Antideg. Baseline = (0.25(WQC background conc.) + background conc.) for acute and chronic
 - = (0.1(WQC background conc.) + background conc.) for human health
- 7. WLAs established at the following stream flows: 1Q10 for Acute, 30Q10 for Chronic Ammonia, 7Q10 for Other Chronic, 30Q5 for Non-carcinogens, Harmonic Mean for Carcinogens, and Annual Average for Dioxin. Mixing ratios may be substituted for stream flows where appropriate.

Metal	Target Value (SSTV)	Note: do not use QL's lower than the
Antimony	1.4E+01	minimum QL's provided in agency
Arsenic	1.0E+01	guidance
Barium	2.0E+03	
Cadmium	2.3E-01	
Chromium III	1.4E+01	
Chromium VI	6.4E+00	
Copper	1.5E+00	
Iron	3.0E+02	
Lead	1.4E+00	
Manganese	5.0E+01	
Mercury	5.0E-02	
Nickel	3.8E+00	
Selenium	3.0E+00	
Silver	1.3E-01	
Zinc	1.4E+01	

not use QL's lower than the

Facility = VA0063037 - Blessed Sacrament Chemical = Ammonia Chronic averaging period = 30 WLAa = 45 WLAc = 2.7 Q.L. = 0.2 # samples/mo. = 1 # samples/wk, = 1

Summary of Statistics:

observations = 1

Expected Value = 9

Variance = 29.16

C.V. = 0.6

97th percentile daily values = 21.9007

97th percentile 4 day average = 14.9741

97th percentile 30 day average = 10.8544

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

A limit is needed based on Chronic Toxicity
Maximum Daily Limit = 5.44770925222404
Average Weekly Limit = 5.44770925222404
Average Monthly Limit = 5.44770925222404

The data are:

9

Facility = VA0063037 - Blessed Sacrament Chemical = TRC Chronic averaging period = 4 WLAa = 0.019 WLAc = 0.011 Q.L. = 0.1 # samples/mo. = 30 # samples/wk. = 7

Summary of Statistics:

observations = 1

Expected Value = 20

Variance = 144

C.V. = 0.6

97th percentile daily values = 48.6683

97th percentile 4 day average = 33.2758

97th percentile 30 day average = 24.1210

< Q.L. = 0

Model used = BPJ Assumptions, type 2 data

A limit is needed based on Chronic Toxicity
Maximum Daily Limit = 1.60883226245855E-02
Average Weekly Limit = 9.8252545713861E-03
Average Monthly Limit = 7.9737131838758E-03

The data are:

20

MEMORANDUM

DEPARTMENT OF ENVIRONMENTAL QUALITY Piedmont Regional Office

4949-A Cox Road, Glen Allen, Virginia 23060-6295

804/527-5020

TO:

File

FROM:

Jaime Bauer, Water Permit Writer

DATE:

December 17, 2008

SUBJECT:

Site Visit VA0063037 - Huguenot Academy - Blessed Sacrament

Cc:

Charlie Stitzer, Water Compliance Inspector

On Tuesday December 17, 2008, I met with Huguenot Academy President, Mr. James Fortune to perform a site visit at the Blessed Sacrament school located in Powhatan County. The VPDES permit for this facility will expire on December 25, 2008. The facility maintains a waste stabilization lagoon which receives wastewater by gravity flow. There are approximately 500 students and staff at the school. The grass around the lagoon is well maintained. The temporary gate was installed on the fence around the lagoon because the previous gate was stolen. The lagoon did not appear to be discharging which is consistent with monthly DMRs.

There was no sampling performed or review of onsite records.

Attachment 6 – Ground Water Monitoring Evaluation

Groundwater Monitoring Data Analysis

Background

A ground water monitoring plan for the Blessed Sacrament - Huguenot Academy was approved December 12, 1995. The plan included the installation of MW-1, MW-2 and MW-3. Review of the ground water monitoring data in 2003 indicated potential ground water contamination from stabilization lagoon. The 2003 permit required the facility to submit a corrective action plan for possible ground water contamination. The CAP proposed installing additional monitoring wells, conducting a pump test on MW-2, and investigating areas around the outfall for lagoon failure. The CAP was approved by the Department on September 29, 2004. MW-2 was closed in November 2004 and MW-4 was installed. Additional monitoring wells (MW-5, MW-6, and MW-7) were proposed and subsequently installed in response to high *E. coli* concentrations in MW-4 reported in the ground water monitoring results received December 20, 2006.A revision to the plan was approved on January 16, 2007 to change the bacteria testing from fecal coliform to *E. coli*.

The ground water monitoring currently occurs at six wells (MW-1, MW-3, MW-4, MW-5, MW-6, and MW-7) for the following parameters: *E. coli* (formerly fecal coliform was monitored), chlorides, ammonia, nitrate, total organic carbon (TOC), and total phosphorus. Normality of data sets reported from 2001 through 2008 were tested using the Kolmorogov-Smirnov Goodness of Fit Test for Continuous Data (at a 5% Level of Significance)." The Student's T-test was used to determine whether or not there was a significant difference between the identified up-gradient and down gradient wells for each parameter where the data was normally distributed. For those parameters where the data was not normally distributed, a non-parametric test was used to determine if the non-normal data demonstrated a significant difference in up-gradient and down gradient data. The normal (t-test) and non-normal test results are below. Well MW-1 is the background monitoring well. The data were also reviewed for exceedances of the Ground Water Standards for the Piedmont and Blue Ridge Providence found in 9 VAC 25-280-50.

Data Evaluation

Summary of Significance Tests

	MW3	MW4	MW5	MW6	MW7
E. coli (fecal coliform previously monitored)		Х			
рН					
Chlorides	Х		X		Х
Ammonia		X			
Nitrate					
TOC		X			
Total Phosphorus					

[&]quot;X" signifies a significant difference between the up gradient and down gradient well was observed.

Results

E. coli (previously monitored as fecal coliform): The analysis indicates that there is significant increase above background at MW-4. There is no ground water standard for *E. coli* or fecal coliform.

pH: The analysis indicates that there is no significant increase over background at any of the monitoring wells. However, on several occasions the ground water monitoring results were found to exceed the ground water standard range of 5.5-8.5 S.U. Specifically, results were found outside the standard range as follows: MW-1: 12 times, MW-3: 5 times, MW-4: 4 times, MW-5: 3 times, and MW-7: 2 times.

Chlorides: The analysis indicates that there is significant increase over background concentrations at MW-3, MW-5, and MW-7. There is no groundwater standard for chlorides but there is a Water Quality Criterion of 25 mg/l in the Piedmont Physiographic province. Two data points at MW-5 exceeded this criterion and three other recorded data points closely approached it with recorded measurements of 24.9, 24.2, and 24.6.

Ammonia: The analysis indicates that there is significant increase over background at MW-4. In addition, the ground water standard for ammonia is 0.025 mg/L. The detection limit for ammonia was reported as 1.0 mg/L. For results reported as "below detection level" compliance with the ground water standard for ammonia could not be evaluated. However, monitoring demonstrated exceedance of the standards on several occasions as follows: MW-1: 9 times, MW-3: 7 times, MW-4 3 times, MW-5: 6 times, MW-6: 1 time, and MW-7: 1 time.

Nitrate: The analysis indicates that there is no significant increase over background at any of the monitoring wells. The data demonstrates that the ground water standard of 5.0 mg/L for nitrate was occasionally exceeded as follows: MW-1: 1 time, MW-3: 5 times, and MW-4: 2 times.

TOC: The analysis indicates that there is significant increase over background at MW-4.

Total Phosphorus: The analysis indicates that there is no significant increase over background at any of the monitoring wells.

Conclusion

In a few incidences, fecal coliform and *E. coli* measurements were reported higher than <1 n/100 mL. It is abnormal for ground water to contain either of these parameters in concentrations greater than <1 n/100 mL. The permittee has indicated that the flush surface mount on MW-1 has begun to fail and that MW-4 has structural damage. *E. coli* and fecal coliform observations were inconsistently high, and the consultant for the permittee believes this to be from surface runoff infiltration during storm events. The consultant is proposing to replace MW-4 because of the extensive problems. The permittee has been instructed to make the necessary repairs and replacement to both of these monitoring wells to rectify the problems.

Significant differences in up gradient and down gradient wells for ammonia and TOC were also observed. A significant difference in wells MW-3, MW-5, and MW-7 from the background well for chloride was observed. However, as previously noted there is no standard for chloride and only MW-5 exceeded the Water Quality Criterion of 25 mg/L on two occasions.

As previously noted, on several instances results from the ground water monitoring exceeded the ground water monitoring standards for the Piedmont and Blue Ridge Providence found in 9 VAC 20-280-50. A corrective action plan is being required as part of the permit to address the ground water standard exceedances and the significant differences noted above.

Fecal and Ecoli Data - MPN

Ecoli Sampling began in November 2006

	WELL 1	WELL 3	\\/_\	IMELL C	TVA/ELL O	Ivarent e
Jan-01	<2		WELL 4	WELL 5	WELL 6	WELL 7
		<2				
Mar-01	<2	<2				
Jun-01	<2	50				
Oct-01	<2	<2				
Dec-01	<2	<2				
Jun-02	<2	NDR				
Mar-03	<2	<2				
Jun-03	<2	2				
Aug-03	<2	4				
Nov-03	<2	<2				
Mar-04	<2	<2				
Jun-04	50	<2				
Nov-04	<2	<2	2			
Jan-05	<2	<2	<2			
Jun-05	<2	<2	<2			
Sep-05	<1	<1	NDR			
Dec-05	<2	<2	NDR			
Mar-06	<1	<1	<1			
May-06	<1	<1	NDR	Design the control of		
Sep-06	<1	<1	NDR			
Nov-06	1	4	5790			
Feb-07	1	<1	<1	1	<1	<1
Jun-07	1	<1	1	1	<1	<1
Sep-07	1730	<1	NDR	1	1	<1
Dec-07	5	NDR	NDR	<1	NDR	<1
Mar-08	<1	<1	NDR	<1	<1	<1
Jun-08	13	<1	1200	<1	1	156

NDR: No Data Reported
0: Below Quantification Level

Groundwater Data Analysis for Non-normal Data

Parameter	Fecal/Ecoli
Up Gradient Data	Down Gradient Data
2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	2 50 2 2 2 4 2 2 2 2 2 1 1 1 1 1 1
Minimum 1	Minimum 1
Maximum 1730 Is there a s	Maximum 50 significant
differe	

NO

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Fecal/Ecoli
Monitoring Well #:	MW3

Groundwater Data Analysis for Non-normal Data

Parameter	Fecal/Ecoli				
Up Gradient Data	Down Gradient Data				
2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1	2 2 1 5790 1 1 1200				
Minimum 1	Minimum 1				
Maximum 1730	Maximum 5790				
	Is there a significant difference?				
14.					

YES

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Fecal/Ecoli
Monitoring Well #:	MW4

Permit Number Facility Name

Parameter

Monitoring Well #:

What is the number of observations in the set of background data (n_b) ?

What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Fecal/Ecoli MW5 27

	Background	Monitored Site	[X _b -X _b (ave)] ²	$[X_m-X_m(ave)]^2$
1	2	1	4356.000	0.000
2	2	1	4356.000	0.000
3	2	1	4356.000	0.000
4	2	1	4356.000	0.000
5	2	1	4356.000	0.000
6	2	1	1	0.000
7	2	0	4356.000	0.000
8	2	0	4356.000	0.000
9	2	0	4356.000	0.000
10	2	0	4356.000	0.000
11	2	0	4356.000 4356.000	0.000
12	50	0	1 1	0.000
13	2	0	324.000	0.000
14	2	0	4356.000	0.000
15	2	0	4356.000	0.000
16	1	0	4356.000	0.000
17	2	0	4489.000	0.000
18	1	0	4356.000	0.000
19	1	0	4489.000	0.000
20	1	0	4489.000	0.000
21	1	0	4489.000	0.000
22	1	0	4489.000	0.000
23	1	0	4489.000	0.000
24	1730	0	4489.000	0.000
25	5	0	2762244.000	0.000
26	1		3969.000	0.000
27	13	0	4489.000	0.000
28	0		3025.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37		0	0.000	0.000
	0	0	0.000	0.000
38 39	0	0	0.000	0.000
40	0	0	0.000	0.000
40	0	0	0.000	0.000
(ave) =	68.000	K _m (ave) = 1.000		

$X_b(ave) =$	68.000	$X_{m}(ave) = 1.000$
T _b = T _m =	1.706 2.015	(from lookup table)
$s_b^2 = s_m^2 =$	110415.923 0.000	$\begin{split} &= [(X_{b1} - X_b(ave))^2 + (X_{b2} - X_b(ave))^2 (X_{bn} - X_b(ave))^2] J(n_b - 1) \\ &= [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2 (X_{mn} - X_m(ave))^2] J(n_m - 1) \end{split}$
T _{star} =	-1.048	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
W _b = W _m =	4089.479 0.000	$= s_b^2/n_b$ $= s_m^2/n_m$
T _{comp} =	1.706	$= (W_b \star T_b + W_m \star T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

Permit Number Facility Name Parameter Monitoring Well #:

 $W_b =$

W_m =

4089.479

0.000

 $= s_b^2/n_b$

 $= s_m^2/n_m$

 $= (W_b \star T_b + W_m \star T_m)/(W_b + W_m)$

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Fecal/Ecoli MW6 27

	Backgroun	d Monitored Site	[X _b -X _b (ave)] ²		[X _m -X _m (ave)] ²
1	2	1	4250.000		
2	2	1	4356.000		0.000
3	2	1	4356.000 4356.000		0.000
4	2	1	4356.000		0.000
5	2	1	4356.000		0.000
6	2	0	4356.000		0.000
7	2	0	4356.000		0.000
8	2	0	4356.000		0.000
9	2	0	4356.000		0.000
10	2	0	4356.000		0.000
11	2	0	4356.000		0.000
12	50	0	324.000		0.000
13	2	0	4356.000		0.000
14	2	0	4356.000		0.000
15	2	0	4356.000		0.000
16	1	0	4489.000		0.000
17	2	0	4356.000		0.000
18	1	0	4489.000		0.000
19	1	0	4489.000		0.000
20	1	0	4489.000		0.000
21	1	0	4489.000		0.000
22	1	0	4489.000		0.000
23	1	0	4489.000		0.000
24	1730	0			0.000
25	5	0	2762244.000 3969.000		0.000
26	1	0	4489.000		0.000
27	13	0			0.000
28	0	0	3025.000	- 1	0.000
29	0	0	0.000	- 1	0.000
30	0	0	0.000	- 1	0.000
31	0	0	0.000	- 1	0.000
32	0	0			0.000
33	0	0	0.000	- 1	0.000
34	0	0	0.000	- 1	0.000
35	0	0	0.000	- 1	0.000
36	0	0	0.000	- 1	0.000
37	0	0	0.000	- 1	0.000
38	0	0	0.000		0.000
39	0	0	0.000		0.000
40	0	0	0.000		0.000
V /\		,			
X _b (ave) =	68.000	$X_{m}(ave) = 1.000$			
T _b =	1.706	(from lookup table)			
T _m =	2.132	*			
$s_b^2 =$	110415.923	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2$	(ave)) ²]/(n _b -1)		
s _m ² =	0.000	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-x_m(ave))^2]$	$(n_m(ave))^2]/(n_m-1)$		
T _{star} =	-1.048	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$			

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

Groundwater Data Analysis for Non-normal Data

Up Gradient Data Down Gradient Data 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 2 2 2 2 2 2 2 1 1 1 1 1 1 13 Minimum Minimum Minimum 1 1	Parameter	Fecal/Ecoli
1		Gradient
1 1	2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1	1 1 1 1
Maximum Maximum	Minimum 1 Maximum	Minimum 1 Maximum
1730 156 Is there a significant difference?	1730	156 ignificant

NO

Permit Number Facility Name Parameter	VA0063037
Facility Name	Huguenot Academy
Parameter	Fecal/Ecoli
Monitoring Well #:	MW7

pH - S.U.

	WELL 1	WELL 3	WELL 4	WELL 5	WELL 6	WELL 7
Jan-01	5.00	4.80				
Mar-01	5.20	6.10				
Jun-01	5.10	6.60				
Oct-01	6.10	5.50				
Dec-01	5.10	NDR				
Jun-02	4.90	NDR				
Mar-03	4.90	5.50				
Jun-03	6.50	5.70				
Aug-03	4.80	5.50				
Nov-03	4.30	5.00				
Mar-04	7.20	7.20				
Jun-04	6.78	6.96				
Nov-04	5.75	5.61	5.63			
Jan-05	5.35	5.71	5.36			
Jun-05	5.35	5.71	5.36	753 S. F. (6)		White to be
Sep-05	5.65	5.56	NDR			distribution of
Dec-05	6.40	6.59	NDR			
Mar-06	7.32	6.21	6.23			
May-06	5.85	6.00	NDR			
Sep-06	6.54	6.39	NDR			
Nov-06	5.16	6.38	6.09			
Feb-07	4.11	4.25	4.95	4.24	5.68	4.73
Jun-07	5.78	5.29	5.15	5.34	5.86	5.76
Sep-07	6.02	6.23	NDR	6.25		6.50
Dec-07	6.00	NDR	NDR	5.98		6.51
Mar-08	5.51	5.30	NDR	5.41	5.54	5.26
Jun-08	6.16	6.15	6.17	6.14		6.14

Parameter	рН		
Up Gradient Data	Down Gradient Data		
5	4.8		
5.2 5.1 6.1 5.1	6.1 6.6 5.5		
4.9 4.9 6.5 4.8 4.3 7.2 6.78	5.5 5.7 5.5 5 7.2 6.96		
5.75 5.35 5.35 5.65 6.4 7.32	5.61 5.71 5.71 5.56 6.59 6.21		
5.85 6.54 5.16 4.11 5.78 6.02	6 6.39 6.38 4.25 5.29 6.23		
6 5.51 6.16	5.3 6.15		
Minimum	Minimum		
4.11 Maximum 7.32	4.25 Maximum 7.2		
Is there a s	ignificant		
Lower Range	Upper Range		
No	No		

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	pH
Monitoring Well #:	MW3

Parameter	рН
Up Gradient Data	Down Gradient Data
5 5.2 5.1 6.1 5.1 4.9 6.5 4.8 4.3 7.2 6.78 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16	5.63 5.36 6.23 6.09 4.95 5.15 6.17 6.15
Minimum 4.11	Minimum 4.95
Maximum 7.32	Maximum 6.23
Is there a s	ence?
Lower Range	Upper Range
No	No

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Hq
Monitoring Well #:	MW4

Parameter pH Up Gradient Data Down Gradient Data 5 4.24 5.2 5.34 5.1 6.25 6.1 5.98 5.1 5.41 4.9 6.5 4.8 4.3 7.2 6.78 6.75 5.35 5.35 5.35 5.35 5.35 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 6 5.51 6.16 Is there a significant difference? Upper Range Lower Range Upper Range		
State	Parameter	рН
5.2 5.34 5.1 6.25 6.1 5.98 5.1 5.41 4.9 6.5 4.8 4.3 7.2 6.78 5.75 5.35 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum 4.11 Maximum 7.32 Maximum 7.32 Is there a significant difference? Upper Range Lower Range	Data	Gradient
S.1 6.25 5.98 5.1 5.41 4.9 6.5 4.8 4.3 7.2 6.78 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 6.16		
6.1 5.98 5.1 4.9 6.5 4.8 4.3 7.2 6.78 5.75 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum 4.11 Maximum 7.32 Maximum 7.32 Is there a significant difference? Upper Range Lower Range		
S.1	E1777	
Minimum	1000000	200000000000000000000000000000000000000
Minimum		
Minimum		
4.3 7.2 6.78 5.75 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16	6.5	
7.2 6.78 5.75 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum 4.11 Maximum 7.32 Maximum 7.32 Maximum 7.32 Is there a significant difference? Upper Range		
6.78 5.75 5.35 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum 4.11 Maximum 7.32 Maximum 7.32 Is there a significant difference? Lower Range Upper Range		
S.75 S.35 S.35 S.35 S.65 6.4 7.32 S.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum Minimum 4.11 4.24 Maximum A.11 7.32 Sthere a significant difference? Lower Range Upper Range		
S.35 S.32		
S.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum		
Minimum		
7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum 4.11 4.24 Maximum 7.32 Is there a significant difference? Lower Range Manage Upper Range		
5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16 Minimum 4.11 Maximum 7.32 Is there a significant difference? Lower Range Month Maximum 6.25 Upper Range		
Minimum 4.11 Maximum 7.32 Maximum 7.32 Step a significant difference? Lower Range Minimum 4.11 Maximum 6.25 Upper Range		
S.16 4.11 5.78 6.02 6 5.51 6.16		
Minimum		
Minimum	000 E 100 E	
Minimum		
Minimum 4.11 Maximum 7.32 Is there a significant difference? Lower Range Minimum 4.24 Maximum 6.25 Upper Range		
Minimum 4.11 Maximum 7.32 Is there a significant difference? Lower Range Minimum 4.24 Maximum 6.25 Upper Range	E MANAGEMENT CO.	
Minimum 4.11 4.24 Maximum 7.32 Maximum 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range	\$100.0000000000000000000000000000000000	
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		100
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
4.11 4.24 Maximum 7.32 6.25 Is there a significant difference? Lower Range Range	8.611.	
Maximum 7.32 6.25 Is there a significant difference? Lower Range Range		
7.32 6.25 Is there a significant difference? Upper Range Range		
Is there a significant difference? Upper Lower Range Range		6.25
difference? Upper Lower Range Range	CONTRACTOR OF THE PARTY OF THE	
Lower Range Range		
Lower Range Range	dillere	
The second secon	Lower Range	2.00
NO I NO	No	
No No	NO	NO

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	рН
Monitoring Well #:	MW5

Parameter	рН		
Up Gradient Data	Down Gradient Data		
5 5.2 5.1 6.1 5.1 4.9 6.5 4.8 4.3 7.2 6.78 5.75 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16	5.68 5.86 5.85 5.54 6.15		
Minimum 4.11	Minimum 5.54		
Maximum 7.32	Maximum 6.15		
Is there a s			
Lower Range	Range		
No	No		

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Hq
Monitoring Well #:	MW6

Groundwa	ater Data /
Parameter	рН
Up Gradient Data	Down Gradient Data
5 5.2 5.1 6.1 5.1 4.9 6.5 4.8 4.3 7.2 6.78 5.75 5.35 5.65 6.4 7.32 5.85 6.54 5.16 4.11 5.78 6.02 6 5.51 6.16	4.73 5.76 6.5 6.51 5.26 6.14
Minimum 4.11 Maximum 7.32	Minimum 4.73 Maximum 6.51
Is there a s	nce?
Lower Range No	Upper Range No

Permit Number	VA0063037		
Facility Name	Huguenot Academy		
Parameter	Hq		
Monitoring Well #:	MW7		

Chlorides - mg/L

	WELL 1	WELL 3	WELL 4	WELL 5	WELL 6	WELL 7
Jan-01	4	5				
Mar-01	5	6				
Jun-01	3	6				4.6 多.2 集
Oct-01	3	4				
Dec-01	3	NDR				
Jun-02	4	NDR	100			
Mar-03	5	8				
Jun-03	4	10				
Aug-03	<1.0	11				6.635.6
Nov-03	3	11				
Mar-04	3	11				
Jun-04	4	18				
Nov-04	5	11	0.1			
Jan-05	5	15	0			
Jun-05	5	10	0			
Sep-05	5.2	8.8	NDR			的使用作物
Dec-05	5	9	NDR			
Mar-06	4.5	10	<1			
May-06	4.6	8.7	NDR			La Broken
Sep-06	4.5	8.86	NDR			
Nov-06	3.1	9.9	3.66			
Feb-07	27	7.7	0.21	27	7.7	11
Jun-07	3.8	16	<0.1	30	3.6	19
Sep-07	4.1	4.1	NDR	22	8.4	7.2
Dec-07	4.1	NDR	NDR	24.9	NDR	NDR
Mar-08	3.7	9.6	NDR	24.2	21.9	8.1
Jun-08	3.3	13.3	<0.1	24.6	13.9	13.6

NDR: No Data Reported
0: Below Quantification Level

Permit Number Facility Name Parameter Monitoring Well #:

What is the number of observations in the set of background data (n_b) ?

What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Chloride MW3 27 24

	Background	Monitored Site	$[X_b-X_b(ave)]^2$		[X _m -X _m (ave)] ²
1	4	5	0.659		04.700
2	5	6	0.658		21.762
3	3	6	0.036		13.432
4	3	4	3.280		13.432
5	3	8	3.280		32.092
6	4		3.280		2.772
7	5	10 11	0.658		0.112
8	4		0.036		1.782
9	1	11	0.658		1.782
10	3	11	14.525		1.782
11	3	18	3.280		69.472
		11	3.280		1.782
12	4	15	0.658	3	28.462
13	5	10	0.036		0.112
14	5	8.8	0.036		0.748
15	5	9	0.036		0.442
16	5.2	10	0.151		0.112
17	5	8.7	0.036		0.931
18	4.5	8.86	0.097		0.648
19	4.6	9.9	0.045		0.055
20	4.5	7.7	0.097		3.861
21	3.1	16	2.928		40.132
22	27	4.1	492.347	- 1	30.969
23	3.8	13.3	1.022	- 1	13.213
24	4.1	9.6	0.506		0.004
25	4.1	0	0.506		0.000
26	3.7	0	1.235		0.000
27	3.3	0	2.283	- 1	0.000
28	0	0	0.000	- 1	0.000
29	0	0	0.000		0.000
30	0	0	0.000		0.000
31	0	0	0.000		0.000
32	0	0	0.000	1	0.000
33	0	0	0.000	- 1	0.000
34	0	0	0.000	- 1	0.000
35	0	0	0.000	- 1	0.000
36	0	0	0.000	- 1	0.000
37	0	0	0.000		0.000
38	0	0	0.000	1	0.000
39	0	0	0.000		
40	0	0	0.000		0.000
			0.000	ı	0.000
(ave) =	4.811	$X_{m}(ave) = 9.665$			
=	1.706	(from lookup table)			
=	1.714				

$X_b(ave) =$	4.811	X _m (ave) = 9.665
T _b = T _m =	1.706 1.714	(from lookup table)
$s_b^2 = s_m^2 =$	20.576 12.169	$\begin{split} &= [(X_{b1} - X_b(ave))^2 + (X_{b2} - X_b(ave))^2 (X_{bn} - X_b(ave))^2]/(n_b - 1) \\ &= [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2 (X_{mn} - X_m(ave))^2]/(n_m - 1) \end{split}$
T _{star} =	4.309	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
W _b = W _m =	0.762 0.507	$= s_b^2/n_b$ = s_m^2/n_m
T _{comp} =	1.709196213	$= (W_b * T_b + W_m * T_m) / (W_b + W_m)$

Parameter	Chloride
Up Gradient Data	Down Gradient Data
4 5 3 3 4 5 5 5 5 5 5 5 5 4.6 4.5 3.1 27 3.8 4.1 3.7 3.8 4.1 3.7 3.8	0.1 1 3.66 0.21 0.1 0.1
Minimum 1 Maximum	Minimum 0.1 Maximum
27 Is there a s	3.66 significant
differe	nce?

Permit Number	VA0063037
Facility Name Parameter	Huguenot Academy
Parameter	Chloride
Monitoring Well #:	MW4

Parameter	Chloride
Up Gradient Data	Down Gradient Data
4 5 3 3 4 5 5 5 5 5 4.5 4.5 4.5 3.1 27 3.8 4.1 3.7 3.3	27 30 22 24.9 24.2 24.6
Minimum 1	Minimum 22
Maximum 27	Maximum 30
Is there a s	

YES

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Chloride
Monitoring Well #:	MW5

Permit Number Facility Name Parameter

Monitoring Well #:
What is the number of observations in the set of background data (n_b)?

What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Chloride MW 27 5

	Background	Monitored Site	[X _b -X _b (ave)] ²	[X _m -X _m (ave)] ²
1	4	7.7	0.658	11.560
2	5	3.6	0.036	56.250
3	3	8.4	3,280	7.290
4	3	13.9	3.280	7.840
5	3	21.9	3.280	116.640
6	4	0	0.658	0.000
7	5	0	0.036	0.000
8	4	0	0.658	0.000
9	1	0	14.525	0.000
10	3	0	3.280	0.000
11	3	0	3.280	0.000
12	4	0	0.658	0.000
13	5	0	0.036	0.000
14	5	0	0.036	0.000
15	5	0	0.036	0.000
16	5.2	0	0.151	0.000
17	5	0	0.036	0.000
18	4.5	0	0.097	0.000
19	4.6	0	0.045	0.000
20	4.5	0	0.097	0.000
21	3.1	0	2.928	0.000
22	27	0	492.347	0.000
23	3.8	0	1.022	0.000
24	4.1	0	0.506	0.000
25	4.1	0	0.506	0.000
26	3.7	0	1.235	0.000
27	3.3	0	2.283	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37	0	0	0.000	0.000
38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000
(ave) =	4.811 X _m (a	ve) = 11.100		

4.811	X _m (ave) = 11.100
1.706	(from lookup table)
2.132	
20.576	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
49.895	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(n_m-1)$
1.919	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
0.762	$= s_b^2/n_b$
9.979	$= s_m^2/n_m$
2.101774944	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$
	1.706 2.132 20.576 49.895 1.919

There is no significant difference between the monitoring data and the background data

Permit Number Facility Name Parameter Monitoring Well #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA00e3037 Huguenot Academy Chloride MW7 27

	Background	Monitored Site	[X _b -X _b (ave)] ²	$[X_m-X_m(ave)]^2$
1	4	44	0.050	
2	5	11 19	0.658	0.608
3	3	7.2	0.036 3.280	52.128 20.976
4	3	13.6	3.280	3.312
5	3	8.1	3.280	13.542
6	4	0	0.658	0.000
7	5	0	0.036	0.000
8	4	0	0.658	0.000
9	1	0	14.525	0.000
10	3	0	3.280	0.000
11	3	0	3.280	0.000
12	4	0	0.658	0.000
13	5	0	0.036	0.000
14	5	0	0.036	0.000
15	5	0	0.036	0.000
16	5.2	0	0.151	0.000
17	5	0	0.036	0.000
18	4.5	0	0.097	0.000
19	4.6	0	0.045	0.000
20	4.5	0	0.097	0.000
21	3.1	0	2.928	0.000
22	27	0	492.347	0.000
23	3.8	0	1.022	0.000
24	4.1	0	0.506	0.000
25	4.1	0	0.506	0.000
26	3.7	0	1.235	0.000
27	3.3	0	2.283	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37	0	0	0.000	0.000
38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000
$X_b(ave) =$	4.811	$X_{m}(ave) = 11.780$		
T _b =	1.706	(from lookup table)		
T _m =	2.132	(11-011 lookup table)		
· m	2.102			
s _b ² =	20.576	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2$	_h (ave)) ²]/(n _h -1)	
s _m ² =	22.642	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-x_m(ave))^2]$	$X_{m}(ave))^{2}]/(n_{m}-1)$	
T _{star} =	3.030	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$)	
W _b =	0.762	$= s_b^2/n_b$		
W _m =	4.528	= s _m ² /n _m		
m.		аменисели		
T _{comp} =	2.07063516	$= (W_b {\star} T_b + W_m {\star} T_m) / (W_b + W_m)$		

Ammonia - mg/L

	WELL 1	WELL 3	WELL 4	WELL 5	WELL 6	WELL 7
Jan-01	0.2	0				
Mar-01	0.4	0				
Jun-01	0	0.1				
Oct-01	0	0				
Dec-01	0	NDR				
Jun-02	0	NDR				
Mar-03	1.3	1.4				
Jun-03	0	0.2				
Aug-03	0.3	0.2				
Nov-03	0.4	0.6				
Mar-04	0	0				
Jun-04	0	0				
Nov-04	0.3	0.2	0.1			
Jan-05	0	0	0			
Jun-05	0	0	0			
Sep-05	0	0	NDR			
Dec-05	0	0	NDR			
Mar-06	0.11	0	0			
May-06	0	0	NDR			
Sep-06	0	0	NDR			
Nov-06	0.14	0	3.66			
Feb-07	2.6	0.24	0.21	2.6	0.24	0.12
Jun-07	0	0	0	0.26	0	0
Sep-07	0	0	NDR	0.43	0	0
Dec-07	0	NDR	NDR	1.07	NDR	0
Mar-08	0	0	NDR	0.6	0	0
Jun-08	0	0	0	0.38	0	0

NDR: No Data Reported
0: Below Quantification Level

Parameter	Ammonia
Up Gradient Data	Down Gradient Data
0.2 0.4	
	0.1
1.3 0.3 0.4	NDR NDR 1.4 0.2 0.2 0.6
0.3	0.2
0.11	
0.14 2.6	0.24
	NDR
Minimum 0.11	Minimum 0.1
Maximum 2.6	Maximum 1.4
Is there a s	significant
differe	ence?

Permit Number	VA0063037
Permit Number Facility Name Parameter	Huguenot Academy
Parameter	Ammonia
Monitoring Well #:	MW3

Parameter	Ammonia		
Up Gradient Data	Down Gradient Data		
0.2 0.4	0.1		
1.3 0.3 0.4	1 3.66 0.21 0.1 0.1		
0.3			
0.11			
0.14			
2.6			
Minimum 0.11	Minimum 0.1		
Maximum 2.6	Maximum 3.66		
Is there a s			
ANALY Y PER			

YES

Permit Number	VA0063037
Facility Name Parameter	Huguenot Academy
Parameter	Ammonia
Monitoring Well #:	MWB

Permit Number Facility Name Parameter Monitoring Weil #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Ammonia MW 5 27

	Background	Monitored Site	[X _b -X _b (ave)] ²		[X _m -X _m (ave)] ²	
1	0.2	0.0				
2	0.4	2.6	0.000		2.924	
3	0.4	0.26	0.035		0.397	
4	0	0.43 1.07	0.045		0.212	
5	0		0.045		0.032	
6	0	0.6 0.38	0.045		0.084	
7	1.3		0.045		0.260	
8	0	0	1.182		0.000	
9	0.3	0	0.045		0.000	
10	0.4	0	0.008		0.000	
11	0.4	0	0.035		0.000	
12	0	0	0.045		0.000	
13	0.3	0	0.045		0.000	
14	0.3	0	0.008		0.000	
15	0	0	0.045		0.000	
16	0	0	0.045		0.000	
17	0		0.045		0.000	
18	0.11	0	0.045		0.000	
19	0.11		0.011		0.000	
20	0	0	0.045		0.000	
21	0.14	0	0.045		0.000	
		0	0.005		0.000	
22 23	2.6	0	5.698		0.000	
	0	0	0.045		0.000	
24	0	0	0.045		0.000	
25	0	0	0.045		0.000	
26	0	0	0.045		0.000	
27	0	0	0.045		0.000	
28	0	0	0.000		0.000	
29	0	0	0.000		0.000	
30 31	0	0	0.000		0.000	
32	0	0	0.000		0.000	
33		0	0.000		0.000	
34	0	0	0.000		0.000	
35	0	0	0.000	- 1	0.000	
36	0	0	0.000		0.000	
37	0	0	0.000		0.000	
38	0	0	0.000		0.000	
		0	0.000		0.000	
39 40	0	0	0.000	- 1	0.000	
40	U	0	0.000	L	0.000	
X _b (ave) =	0.213	$X_{m}(ave) = 0.890$				
T _b =	1.706	(from lookup table)				
T _m =	2.015	(
- nft	2.010					
s _b ² =	0.300	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$				
s _m ² =	0.782	$= [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2(X_{mn} - X_m(ave))^2]/(n_m-1)$				
0.00		the state of the s				
T _{star} =	1.800	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$)			

There is no significant difference between the monitoring data and the background data

 $= s_b^2/n_b$

 $= s_m^2/n_m$

1.99073019 = $(W_b * T_b + W_m * T_m)/(W_b + W_m)$

0.011

 $W_b =$

 $T_{comp} =$

Parameter	Ammonia
Up Gradient Data	Down Gradient Data
0.2 0.4	0.24
1.3	
0.3 0.4	
0.3	
0.11	
0.14 2.6	
Minimum 0.11	Minimum 0.24
Maximum 2.6	Maximum 0.24
Is there a s	ignificant
differe	ence?

Permit Number	VA0063037
Permit Number Facility Name	Huguenot Academy
Parameter	Ammonia
Parameter Monitoring Well #:	MW6

Parameter	Ammonia
Up Gradient Data	Down Gradient Data
0.2 0.4	0.12
	0.1
1.3	
0.3 0.4	
0.3	
0.11	
0.14 2.6	
Minimum	Minimum
0.11	0.1
Maximum 2.6	Maximum 0.12
Is there a s	
differe	ence?

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Ammonia
Monitoring Well #:	MW7

Nitrate - mg/L

	WELL 1	WELL 3	WELL 4	WELL 5	WELL 6	WELL 7
Jan-01	2.3	0.9	计计信号 管			
Mar-01	2.8	0.9				
Jun-01	2.7	1.9	Latter a			
Oct-01	2.5	1.4				
Dec-01	2.7	NDR				
Jun-02	2.4	NDR				
Mar-03	3.5	1.8				
Jun-03	2.2	1.7				
Aug-03	0	1.5				
Nov-03	1.4	2.7				
Mar-04	2.4	1.8				PERM
Jun-04	2.6	1.3				
Nov-04	3.1	1.3	6.2			ediabala.
Jan-05	2.4	1.2	5.9			
Jun-05	3.4	1.2	5.4			
Sep-05	3.8	0.9	NDR			
Dec-05	3.6	1.1	NDR			
Mar-06	3.31	1.28	6.23			
May-06	3.24	1.13	NDR			
Sep-06	2.7	1.02	NDR			医复杂性性
Nov-06	1.32	1.81	4.48			
Feb-07	10.3	1.79	4.28		1.79	2.38
Jun-07	2.34	1.74	3.35		0.2	1.32
Sep-07	3.02	1.05	NDR	3.6	1.16	3.13
Dec-07	2.87	NDR	NDR		NDR	NDR
Mar-08	2.58	1.36	NDR			3.06
Jun-08	1.5	1.9	5.8	2.4	2.1	2.4

NDR: No Data Reported
0: Below Quantification Level

Permit Number Facility Name Parameter Monitoring Well #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Nitrate MW3 27

	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
1	2.3	0.0		
		0.9	0.308	0.297
2	2.8	0.9	0.003	0.297
	2.7	1.9	0.024	0.207
4	2.5	1.4	0.126	0.002
5	2.7	0	0.024	2.088
6	2.4	0	0.207	2.088
7	3.5	1.8	0.416	0.126
8	2.2	1.7	0.429	0.065
9	0.1	1.5	7.589	0.003
10	1.4	2.7	2.116	1.575
11	2.4	1.8	0.207	0.126
12	2.6	1.3	0.065	0.021
13	3.1	1.3	0.060	0.021
14	2.4	1.2	0.207	0.060
15	3.4	1.2	0.297	0.060
16	3.8	0.9	0.893	0.297
17	3.6	1.1	0.555	0.119
18	3.31	1.28	0.207	0.027
19	3.24	1.13	0.148	0.099
20	2.7	1.02	0.024	0.181
21	1.32	1.81	2.356	0.133
22	10.3	1.79	55.431	0.119
23	2.34	1.74	0.265	0.087
24	3.02	1.05	0.027	0.156
25	2.87	0	0.000	0.000
26	2.58	1.36	0.076	0.000
27	1.5	1.9	1.836	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37	0	0	0.000	0.000
38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000

X _b (ave) =	2.855	X _m (ave) = 1.445
T _b =	1.706	(from lookup table)
T _m =	1.714	
s _b ² =	2.842	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
s _m ² =	0.359	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2]/(n_m-1)$
T _{star} =	-4.066	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
W _b =	0.105	$= s_b^2/n_b$
W _m =	0.015	$= s_m^2/n_m$
T _{comp} =	1.706995135	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

Parameter Nitrate Up Gradient Data Down Gradient Data 2.3 6.2 2.8 5.9 2.7 5.4 2.5 2.7 2.4 6.23 3.5 2.2 0.1 4.48 1.4 4.28 2.4 3.35 2.6 3.1 2.4 3.8 3.6 3.31 3.24 2.7 1.32 10.3 2.34 3.02 2.87 2.58 1.5 1.5 Minimum O.1 Maximum 10.3 Maximum 6 23		
Gradient Data Gradient Data	Parameter	Nitrate
2.3 6.2 2.8 5.9 2.7 5.4 2.5 6.23 3.5 2.2 0.1 4.48 1.4 4.28 2.4 3.35 2.6 3.1 2.4 3.4 3.8 3.6 3.31 3.24 2.7 1.32 10.3 2.34 3.02 2.87 2.58 1.5 Minimum 3.35 Maximum Maximum Maximum	Data	Gradient
0.1 3.35 Maximum Maximum	2.8 2.7 2.5 2.7 2.4 3.5 2.2 0.1 1.4 2.4 2.6 3.1 2.4 3.8 3.6 3.31 3.24 2.7 1.32 10.3 2.34 3.02 2.87 2.58	6.2 5.9 5.4 6.23 4.48 4.28 3.35
	0.1	3.35
	Maximum 10.3	Maximum 6.23

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Nitrate
Permit Number Facility Name Parameter Monitoring Well #:	MW4

Is there a significant difference?

Permit Number Facility Name Parameter

Monitoring Well #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Nitrate MW5 27

	Background	Monitored Site	$[X_b-X_b(ave)]^2$	[X _m -X _m (ave)] ²
1	2.3	10.3	0.308	35.106
2	2.8	6.52	0.003	4.601
3	2.7	3.6	0.024	0.601
4	2.5	2.01	0.126	5.593
5	2.7	1.42	0.024	8.732
6	2.4	2.4	0.207	3.901
7	3.5	0	0.416	0.000
8	2.2	0	0.429	0.000
9	0.1	0	7.589	0.000
10	1.4	0	2.116	0.000
11	2.4	0	0.207	0.000
12	2.6	0	0.065	0.000
13	3.1	0	0.060	0.000
14	2.4	0	0.207	0.000
15	3.4	0	0.297	0.000
16	3.8	0	0.893	0.000
17	3.6	0	0.555	0.000
18	3.31	0	0.207	0.000
19	3.24	0	0.148	0.000
20	2.7	0	0.024	0.000
21	1.32	0	2.356	0.000
22	10.3	0	55.431	0.000
23	2.34	0	0.265	0.000
24	3.02	0	0.027	0.000
25	2.87	0	0.000	0.000
26	2.58	0	0.076	0.000
27	1.5	0	1.836	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37 38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000
40	· ·	0	0.000	0.000
(b(ave) =	2.855	$X_{m}(ave) = 4.375$		
Г _ь =	1.706	(from lookup table)		
	1.700	(monit lookup table)		

$X_b(ave) =$	2.855	X _m (ave) = 4.375
T _b = T _m =	1.706 2.015	(from lookup table)
$s_b^2 = s_m^2 =$	2.842 11.707	$\begin{split} &= [(X_{b1} - X_b(ave))^2 + (X_{b2} - X_b(ave))^2 (X_{bn} - X_b(ave))^2] / (n_b - 1) \\ &= [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2 (X_{mn} - X_m(ave))^2] / (n_m - 1) \end{split}$
T _{star} =	1.060	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
$W_b = W_m =$	0.105 1.951	$= s_b^2/n_b$ $= s_m^2/n_m$
T _{comp} =	1.999182328	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data

Facility Name Parameter Monitoring Well #:

What is the number of observations in the set of background data (n_b) ?

What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Nitrate MW6 5

	Background	Monitored Site	[X _b -X _b (ave)] ²	[X _m -X _r	n(ave)] ²
1	2.3	1.79	0.308	1 222	007
2	2.8	0.2	0.003		262
3	2.7	1.16	0.024		296
4	2.5	0	0.126		904
5	2.7	3.27	0.024		452
6	2.4	2.1	0.207	1 22	000
7	3.5	0	0.416	4 1000	000
8	2.2	0	0.429		000
9	0.1	0	7.589		000
10	1.4	0	2.116		000
11	2.4	0	0.207		000
12	2.6	0	0.065	1 1000	000
13	3.1	0	0.060		000
14	2.4	0	0.207		000
15	3.4	0	0.297		000
16	3.8	0	0.893		000
17	3.6	0	0.555	0.0	000
18	3.31	0	0.207	1 1000	000
19	3.24	0	0.148	0.0	000
20	2.7	0	0.024	0.0	000
21	1.32	0	2.356	0.0	000
22	10.3	0	55.431	0.0	000
23	2.34	0	0.265	0.0	000
24	3.02	0	0.027	0.0	000
25	2.87	0	0.000	0.0	000
26	2.58	0	0.076	0.0	000
27	1.5	0	1.836	0.0	000
28	0	0	0.000	0.0	000
29	0	0	0.000	0.0	000
30	0	0	0.000	0.0	000
31	0	0	0.000	0.0	000
32	0	0	0.000	0.0	000
33	0	0	0.000	0.0	000
34	0	0	0.000	0.0	000
35	0	0	0.000	0.0	000
36	0	0	0.000	0.0	000
37	0	0	0.000	0.0	000
38	0	0	0.000	0.0	000
39	0	0	0.000	0.0	000
40	0	0	0.000	0.0	000
X _b (ave) =	2.855	X _m (ave) = 1.704			
_					
T _b =	1.706	(from lookup table)			
T _m =	2.132				
s _b ² =	2.842	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2$	$(ave)^2]/(n_b-1)$		
s _m ² =	1.980	= $[(X_{m1}-X_m(ave))^2+(X_{m2}-X_m(ave))^2(X_{mn}-X_m(ave))^2(X_{m$	$X_{m}(ave))^{2}/(n_{m}-1)$		
T _{star} =	-1.625	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$			
W _b =	0.105	$= s_b^2/n_b$			
W =	0.306	= s ² /n			

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

 $W_m =$

 $= s_m^2/n_m$

2.042552096 = $(W_b * T_b + W_m * T_m)/(W_b + W_m)$

Permit Number Facility Name Parameter Monitoring Well #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Nitrate MW7 27

	Background	Monitored Site	[X _b -X _b (ave)] ²		[X _m -X _m (ave)] ²
1	2.3	2.38	0.308		0.009
2	2.8	1.32	0.003		1.328
3	2.7	3.13	0.024		0.432
4	2.5	0	0.126		6.113
5	2.7	3.06	0.024		0.000
6	2.4	0	0.207		0.000
7	3.5	0	0.416		0.000
8	2.2	0	0.429		0.000
9	0.1	0	7.589		0.000
10	1.4	0	2.116		0.000
11	2.4	0	0.207		0.000
12	2.6	0	0.065		0.000
13	3.1	0	0.060		0.000
14	2.4	0	0.207		0.000
15	3.4	0	0.297		0.000
16	3.8	0	0.893		0.000
17	3.6	0	0.555		0.000
18	3.31	0	0.207		0.000
19	3.24	0	0.148		0.000
20	2.7	0	0.024		0.000
21	1.32	0	2.356		0.000
22	10.3	0	55.431		0.000
23	2.34	0	0.265		0.000
24	3.02	0	0.027		0.000
25	2.87	0	0.000		0.000
26	2.58	0	0.076		0.000
27	1.5	0	1.836		0.000
28	0	0	0.000		0.000
29	0	0	0.000		0.000
30	0	0	0.000		0.000
31	0	0	0.000		0.000
32	0	0	0.000		0.000
33	0	0	0.000		0.000
34	0	0	0.000		
35	0	0	0.000		0.000
36	0	0	0.000		0.0000000000000000000000000000000000000
37	0	0	0.000		0.000
38	0	0	0.000		0.000
39	0	0			0.000
40	0	0	0.000		0.000
40	U	O	0.000	I	0.000
K _b (ave) =	2.855	$X_{m}(ave) = 2.473$			
-	4.700	7			
Γ _ь =	1.706	(from lookup table)			

X _b (ave) =	2.855	$X_{m}(ave) = 2.473$
T _b = T _m =	1.706 2.353	(from lookup table)
$s_b^2 = s_m^2 =$	2.842	$= [(X_{b1} - X_b(ave))^2 + (X_{b2} - X_b(ave))^2 (X_{bn} - X_b(ave))^2]/(n_b - 1)$ $= [(X_{m1} - X_m(ave))^2 + (X_{m2} - X_m(ave))^2]/(n_m - 1)$
T _{star} =	2.627 -0.438	$= [(A_{m1}^{-}A_m(ave))^{-} + (A_{m2}^{-}A_m(ave))^{-} (A_{mn}^{-}A_m(ave))^{-}]/(n_m^{-1})$ $= [X_m(ave) - X_b(ave)]/sqrt(s_m^{-}/n_m + s_b^{-}/n_b)$
W _b = W _m =	0.105 0.657	$= s_b^2/n_b$ $= s_m^2/n_m$
T _{comp} =	2.263636393	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

TOC - mg/L

	WELL 1	WELL 3	WELL 4	WELL 5	WELL 6	WELL 7
Jan-01	2	7				
Mar-01	13	6				
Jun-01	2	3	e to fitte de			
Oct-01	7	12				
Dec-01	6	NDR				
Jun-02	8	NDR				
Mar-03	3	3				
Jun-03	3	2				
Aug-03	2.9	0				
Nov-03	2	3.7				
Mar-04	0	0				
Jun-04	0	0		h feller at l		
Nov-04	3.6	1.7	2.5	138234		
Jan-05	5.2	2.6	1.9			A STATE OF
Jun-05	1.1	0	0.26	hild bearing		
Sep-05	0	0	NDR			
Dec-05	3.1	1.3	NDR			
Mar-06	0	0	<1	ed order		
May-06	0	0	NDR	The transfer		and a second second
Sep-06	1.25	1.72	NDR			
Nov-06	1.4	0	15			
Feb-07	1.5	1	3	1.5	1	1.7
Jun-07	1.6	0	3.9	1.3	<1	<1
Sep-07	1.2	1.2	NDR	1.06	1.2	1.9
Dec-07	2.8		NDR		NDR	NDR
Mar-08	1.4	0	NDR	1.3	<1	<1
Jun-08	1.6	0	13.6	1.3	<1	<1

NDR: No Data Reported
0: Below Quantification Level

Parameter	TOC
Up Gradient Data	Down Gradient Data
2 13 2 7 6 8 3 3 2.9 2	7 6 3 12 NDR NDR 3 2
3.6 5.2 1.1	1.7 2.6
3.1	1.3
1.25 1.4 1.5 1.6 1.2 2.8 1.4 1.6	1.72 1 1.2
Minimum 1.1	Minimum 1
Maximum 13 Is there a s	Maximum 12
differe	_

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	TOC
Monitoring Well #:	MW3

Parameter	тос	
Up Gradient Data	Down Gradient Data	
2 13 2 7 6 8 3	2.5 1.9 0.26	
2.9 2	15 3 3.9	
3.6 5.2 1.1 3.1	13.6	
1.25 1.4 1.5 1.6 1.2 2.8 1.4 1.6		
Minimum 1.1 Maximum	Minimum 0.26 Maximum	
13 15 Is there a significant difference?		

YES

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	TOC
Monitoring Well #:	MWB

Permit Number
Facility Name
Parameter
Monitoring Well #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy TOC MW5 27

	Background	Monitored Site	[X _b -X _b (ave)] ²	[X _m -X _m (ave)] ²
1	2	1.5	0.585	0.001
2	13	1.3	104.759	0.031
3	2	1.06	0.585	0.174
4	7	2.4	17.937	0.853
5	6	1.3	10.466	0.031
6	8	1.3	27.407	0.031
7	3	0	0.055	0.000
8	3	0	0.055	0.000
9	2.9	0	0.018	0.000
10	2	0	0.585	0.000
11	0	0	7.644	0.000
12	0	0	7.644	0.000
13	3.6	0	0.698	0.000
14	5.2	0	5.930	0.000
15	1.1	0	2.772	0.000
16	0	0	7.644	0.000
17	3.1	0	0.112	0.000
18	0	0	7.644	0.000
19	0	0	7.644	0.000
20	1.25	0	2.295	0.000
21	1.4	0	1.863	0.000
22	1.5	0	1.600	0.000
23	1.6	0	1.357	0.000
24	1.2	0	2.449	0.000
25	2.8	0	0.001	0.000
26	1.4	0	1.863	0.000
27	1.6	0	1.357	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37	0	0	0.000	0.000
38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000
X _b (ave) =	2.765	$X_{m}(ave) = 1.477$		

$X_b(ave) =$	2.765	$X_{m}(ave) = 1.477$
T _b =	1.706	(from lookup table)
T _m =	2.015	
s _b ² =	8.576	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
s _m ² =	0.224	$=[(X_{m1}\text{-}X_m(ave))^2+(X_{m2}\text{-}X_m(ave))^2(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1)$
T _{star} =	-2.162	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
W _b =	0.318	$= s_b^2/n_b$
W _m =	0.037	$= s_m^2/n_m$
T _{comp} =	1.738508724	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

Parameter	TOC	
Up Gradient Data	Down Gradient Data	
2 13 2 7 6 8 3 3 2.9 2	1 1.2	
3.6 5.2 1.1		
3.1		
1.25 1.4 1.5 1.6 1.2 2.8 1.4 1.6		
Bairoino	Minimum	
Minimum 1.1 Maximum 13	1 Maximum	
13 1.2 Is there a significant difference?		

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	TOC
Monitoring Well #:	MW6

Parameter	TOC
Up Gradient Data	Down Gradient Data
2 13 2 7 6 8 3 3 2.9 2	1.7 1.9
3.6 5.2 1.1 3.1	
1.25 1.4 1.5 1.6 1.2 2.8 1.4 1.6	
Minimum 1.1 Maximum	Minimum 1.7 Maximum
13 Is there a s	1.9 significant
differe	erice /

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	TOC
Monitoring Well #:	MW7

Total Phosphorus - mg/L

	WELL 1	WELL 3	WELL 4	WELL 5	WELL 6	WELL 7
Jan-01	0.09	0.09			111112	
Mar-01	0.67	1.55				
Jun-01	0.37	0.48				
Oct-01	24.16	1.79				
Dec-01	0.58	1.79				
Jun-02	2.25	NDR				
Mar-03	3.24	2.15				
Jun-03	0	0.45				
Aug-03	0.53	2.73				
Nov-03	0.89	0.58				
Mar-04	1.27	0.63				
Jun-04	0.49	1.32				
Nov-04	0.43	0.68	0.27			
Jan-05	0.74	0.82	4.05			
Jun-05	0.14	0.83	1.9			
Sep-05	0.46	0.44	NDR			
Dec-05	0.44	0.18	NDR			
Mar-06	0.06	0.08	0.51			
May-06	0.07	0.33	NDR			
Sep-06	0.36	0.46	NDR			
Nov-06	<0.05	0.07	0.47			
Feb-07	0.89	0.52	0.84	0.89	0.52	1.61
Jun-07	0.34	0.31	<0.05	0.18	0.46	8.05
Sep-07	0.09	0.09	NDR	0.15	<0.05	0.14
Dec-07	0.51	NDR	NDR	0.14	NDR	7.44
Mar-08	0.42	0.36	NDR	0.14	0.18	0.18
Jun-08	0.57	0.78	11.8	0.09	0.63	0.18

NDR: No Data Reported
0: Below Quantification Level

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Total Phosphorus
Monitoring Well #:	MW3

Parameter	otal Phosphor
Up Gradient Data	Down Gradient Data
0.09 0.67 0.37 24.16 0.58 2.25 3.24 0.53 0.89 1.27 0.49 0.43 0.74 0.14 0.46 0.07 0.36 <0.05 0.89 0.34 0.09 0.51 0.42 0.57	0.27 4.05 1.9 NDR NDR 0.51 NDR 0.47 0.84 <0.05 NDR NDR 11.8
Minimum 0.06	Minimum 0.27
Maximum 24.16 Is there a s	Maximum 11.8 significant
differe	

Permit Number	VA0063037
Facility Name	Huguenot Academy
Parameter	Total Phosphorus
Monitoring Well #:	MW

Parameter	otal Phospho
Up Gradient Data	Down Gradient Data
0.09 0.67 0.37 24.16 0.58 2.25 3.24	0.89 0.18 0.15 0.14 0.14 0.09
0.53 0.89 1.27 0.49 0.43 0.74 0.14 0.46 0.44 0.06 0.07 0.36 <0.05 0.89 0.34 0.09 0.51 0.42 0.57	
Minimum 0.06	Minimum 0.09
Maximum 24.16	Maximum 0.89

Permit Number	VA0063037
Facility Name Parameter	Huguenot Academy
Parameter	Total Phosphorus
Monitoring Well #:	MWG

Permit Number

Facility Name

Parameter

Monitoring Well #:

What is the number of observations in the set of background data (n_b) ? What is the number of observations in the set of monitoring data (n_m) ?

VA0063037 Huguenot Academy Total Phosphorus MW6 27 5

	Background	Monitored Site	$[X_b-X_b(ave)]^2$	$[X_m-X_m(ave)]^2$
	Background	Worldored Site	[NP-NP(GAO)]	[\^m-\^m(ave)]
1	0.09	0.52	4.040	
2	0.67	0.52	1.942	0.026
3	0.37	0.46	0.662	0.010
4	24.16	0	1.240	0.128
5	0.58		514.214	0.128
6	2.25	0.18	0.817	0.032
7	3.24	0.63	0.587	0.000
8	0	0	3.085	0.000
9		0	2.201	0.000
10	0.53	0	0.910	0.000
	0.89	0	0.352	0.000
11 12	1.27	0	0.046	0.000
	0.49	0	0.987	0.000
13	0.43	0	1.110	0.000
14	0.74	0	0.553	0.000
15	0.14	0	1.806	0.000
16	0.46	0	1.048	0.000
17	0.44	0	1.089	0.000
18	0.06	0	2.027	0.000
19	0.07	0	1.999	0.000
20	0.36	0	1.263	0.000
21	0	0	2.201	0.000
22	0.89	0	0.352	0.000
23	0.34	0	1.308	0.000
24	0.09	0	1.942	0.000
25	0.51	0	0.948	0.000
26	0.42	0	1.131	0.000
27	0.57	0	0.835	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37	0	0	0.000	0.000
38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000
(ave) =	1.484	$X_{m}(ave) = 0.358$		
, =	1.706	(from lookup table)		

X _b (ave) =	1.484	$X_m(ave) = 0.358$
T _b =	1.706	(from lookup table)
T _m =	2.132	
s _b ² =	21.025	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
s _m ² =	0.081	$=[(X_{m1}\text{-}X_m(ave))^2+(X_{m2}\text{-}X_m(ave))^2(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1)$
T _{star} =	-1.263	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
W _b =	0.779	$= s_b^2/n_b$
W _m =	0.016	$= s_m^2/n_m$
T _{comp} =	1.714699015	$= (W_b * T_b + W_m * T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data or there is a failure of the assumption made for test validity

Permit Number Facility Name Monitoring Well #:

What is the number of observations in the set of background data (n_b) ?

Total Phosphorus MW6 27

6

Huguenot Academy

What is the number of observations in the set of monitoring data (n_m) ?

	Background	Monitored Site	[X _b -X _b (ave)] ²	$[X_m-X_m(ave)]^2$
• 1	0.09	1.61	1.942	1.751
2	0.67	8.05	0.662	26.180
3	0.37	0.14	1.240	7.803
4	24.16	7.44	514.214	20.310
5	0.58	0.18	0.817	7.581
6	2.25	0.18	0.587	7.581
7	3.24	0	3.085	0.000
8	0	0	2.201	0.000
9	0.53	0	0.910	0.000
10	0.89	0	0.352	0.000
11	1.27	0	0.046	0.000
12	0.49	0	0.987	0.000
13	0.43	0	1.110	0.000
14	0.74	0	0.553	0.000
15	0.14	0	1.806	0.000
16	0.46	0	1.048	0.000
17	0.44	0	1.089	0.000
18	0.06	0	2.027	0.000
19	0.07	0	1.999	0.000
20	0.36	0	1.263	0.000
21	0	0	2.201	0.000
22	0.89	0	0.352	0.000
23	0.34	0	1.308	0.000
24	0.09	0	1.942	0.000
25	0.51	0	0.948	0.000
26	0.42	0	1.131	0.000
27	0.57	0	0.835	0.000
28	0	0	0.000	0.000
29	0	0	0.000	0.000
30	0	0	0.000	0.000
31	0	0	0.000	0.000
32	0	0	0.000	0.000
33	0	0	0.000	0.000
34	0	0	0.000	0.000
35	0	0	0.000	0.000
36	0	0	0.000	0.000
37	0	0	0.000	0.000
38	0	0	0.000	0.000
39	0	0	0.000	0.000
40	0	0	0.000	0.000
X _b (ave) =	1.484 X	$K_{\rm m}(ave) = 2.933$		
-				

$X_b(ave) =$	1.484	$X_{m}(ave) = 2.933$
T _b =	1.706	(from lookup table)
T _m =	2.015	
s _b ² =	21.025	= $[(X_{b1}-X_b(ave))^2+(X_{b2}-X_b(ave))^2(X_{bn}-X_b(ave))^2]/(n_b-1)$
s _m ² =	14.241	$=[(X_{m1}\text{-}X_m(ave))^2+(X_{m2}\text{-}X_m(ave))^2(X_{mn}\text{-}X_m(ave))^2]/(n_m\text{-}1)$
T _{star} =	0.816	= $[X_m(ave)-X_b(ave)]/sqrt(s_m^2/n_m + s_b^2/n_b)$
W _b =	0.779	$= s_b^2/n_b$
W _m =	2.374	$= s_m^2/n_m$
T _{comp} =	1.938666249	$= (W_b \star T_b + W_m \star T_m)/(W_b + W_m)$

There is no significant difference between the monitoring data and the background data

5,037

Gerard Seeley, Jr.

Regional Director

COMMONWEALTH of VIRGINIA

Peter W. Schmidt Director

DEPARTMENT OF ENVIRONMENTAL QUALITY

Piedmont Regional Office Post Office Box 6030 Glen Allen, Virginia 23058 (804) 527-5020

December 12, 1995

Huguenot Academy 2501 Academy Road Powhatan, VA 23139 ATTN: Don W. Deaton, Headmaster

Re: Groundwater Monitoring Plan, Huguenot Academy, Powhatan County

Dear Mr. Deaton:

Our staff has reviewed the referenced groundwater monitoring plan and the plan is approvable. However, the agency's groundwater monitoring procedures are under review.

Should you desire, you may delay implementation of groundwater monitoring until a final decision is reached regarding a revision of groundwater monitoring procedures.

Please call Kyle Winter at 527-5048 if you have any questions.

Sincerely,

J. R. Bell Jr.

Water Permit Manager

VA 0003037

COMMONWEALTH of VIRGINIA

DEPARTMENT OF ENVIRONMENTAL QUALITY

PIEDMONT REGIONAL OFFICE

L. Preston Bryant, Jr. Secretary of Natural Resources 4949-A Cox Road, Glen Allen, Virginia 23060 (804) 527-5020 Fax (804) 527-5106 www.deq.virginia.gov

David K. Paylor Director

Gerard Seeley, Jr. Regional Director

JAN 16 2007

Mr. James Fortune Blessed Sacrament- Huguenot Academy PO Box 519 Powhatan, VA 23139

RE: Blessed Sacrament- Huguenot Academy Lagoon Groundwater Monitoring, VA0063037

Dear Mr. Houghton:

The Department of Environmental Quality staff received a request from Tom Houghton of Swift Creek Environmental Inc. to modify the current groundwater monitoring plan by replacing fecal coliform testing requirements with E.coli testing requirements. As the permit requires E.coli sampling should chlorine disinfection not be available, this change makes lagoon discharge and groundwater monitoring requirements the same. Additionally, the contract laboratory is certified for E.coli testing (but not for fecal coliform testing); approval of this request allows the permittee to continue with the preferred contract laboratory.

The DEQ hereby approves the requested bacteria sampling requirement change and amends the groundwater monitoring plan, previously approved on December 12, 1005, accordingly. No further permit action is required with respect to this modification.

If you have any questions, please contact Gina Kelly at 804/527-5048 or vial email at vekelly@deq.virginia.gov.

Sincerely,

Curtis J. Linderman, P.E. Water Permits Manager

Cc:

Tom Houghton

file

Kelly, Virginia

From:

Kelly, Virginia

Sent:

Tuesday, January 09, 2007 2:14 PM

To:

'Swiftcreekinc@aol.com'

Subject: RE: Blessed Sacrament Hug. GW CAP

I'm putting a letter approving the GW plan change (fecal to e coli sampling) and a copy of the CAP approval in the mail this afternoon. Let me know if you don't get it.

Gina Kelly

Department of Environmental Quality Piedmont Regional Office Water Permits 804/527-5048 804/527-5106 (fax)

----Original Message-----

From: Swiftcreekinc@aol.com [mailto:Swiftcreekinc@aol.com]

Sent: Tuesday, January 09, 2007 7:29 AM

To: Kelly, Virginia

Subject: Re: Blessed Sacrament Hug. GW CAP

Yes Gina I believe proceeding with the CAP would help us. I did not know the CAP was approved. Could you please resend the approval letter. I will need something for Blessed to initiate the project. Secondly, I would like to perform E-coli testing if that is possible instead of fecal. Can this letter serve as the request. The only reason why, is that the lab we are using Air, Water, Soil Labs is approved for e-coli and not fecal. It would make it easier unless you want us to switch labs. Your thoughts?

Thanks,

Tom Houghton Swift Creek Environmental, Inc.

GROUNDWATER MONITORING PLAN HUGUENOT ACADEMY SEWAGE LAGOON POWHATAN COUNTY, VIRGINIA

No. 13067

Plan Submitted Pursuant to Condition of VPDES Permit No. VA0063037

November 1994

Plan Submitted by:

Gene W. Hatcher, P.E.

TABLE OF CONTENTS

1.0	INTRODUCTION
2.0	MONITORING WELL PLACEMENT, REQUIRED SUBMITTALS
3.0	WATER QUALITY TESTING
4.0	GROUND WATER MONITORING
5.0	APPLICABLE PUBLICATIONS
<u>APPENDIX</u>	
	EPA GUIDELINES FOR POLLUTANT ANALYSIS

1.0 INTRODUCTION

Huguenot Academy operates a sewage treatment lagoon for onsite sewage treatment of the school. The specifications outlined herein describe the groundwater well placement, construction and sampling plan for this facility pursuant to conditions set forth in VPDES Permit No. VA0063037.

The sewage treatment lagoon is located behind Huguenot Academy located on State Route 603 (see enclosed Vicinity Map). The treatment facilities consist of a stabilization lagoon. This facility has not discharged in the past 10 years.

2.0 <u>MONITORING WELL PLACEMENT, CONSTRUCTION AND REQUIRED SUBMITTALS</u>

2.1 PLACEMENT

The monitoring network for the Huguenot Academy Lagoon will consist of three monitoring wells: one upgradient well, and two down gradient wells shown as MW-1, MW-2, and MW-3, respectively. The proposed location of these three wells is shown on the enclosed sketch.

2.2 <u>CONSTRUCTION AND DRILLING LOGS</u>

Three monitoring wells are to be drilled in compliance with the following specifications.

2.2.1 <u>NEW WELL CONSTRUCTION</u>

Monitoring wells MW-1,MW-2, and MW-3 are to be constructed in compliance with all applicable standards of the Virginia Department of Health and the Department of Environmental Quality. The execution of the work shall be by competent workmen and performed under the direct supervision of an experienced well driller. Casing pipe and well screens shall be the same material throughout the well. The well shall be drilled straight, plumb, and circular from top to bottom. A cross section of a typical well is included as <u>Detail A</u>.

A. <u>Logs of Wells</u>:

1. During the drilling of wells, an accurate log shall be maintained. Rock and soil samples shall be taken each ten (10) feet using standard core drilling methods. The Contractor shall prepare a graphic boring log showing the depths of each type of soil encountered. A copy of the drawing shall be submitted to the Engineer.

2. <u>Driller's Log</u>:

During the drilling of the well, the Contractor shall prepare and keep a complete log setting forth the following:

- a) The referenced point for all depth measurements.
- b) The depth at which each change of formation occurs.
- c) The depth at which the first water was encountered.
- d) The location and thickness of the aquifer.
- e) The identification of the material of which the aquifer is composed.
- f) The depth interval from which each water and formation sample was taken.
- g) The depth at which the bore-hole diameter changes.
- h) The depth to the static water level (SWL) and observable changes in SWL with well depth.
- i) Total depth of completed well.
- j) The depth of the surface or sanitary seal, if applicable.
- k) The nominal hole diameter of the well bore above and below the casing seal.
- 1) The quantity of cement installed for the seal, if applicable.
- m) The depth and description of the well casing.
- n) Data regarding well-screen type, size, and placement in the well bore.
- o) The sealing off of water-bearing strata, if any, and the exact location thereof.
- p) Any and all other pertinent information required by the well specifications.

B. Abandonment of Wells:

In the possibility that the well is abandoned because of loss of tools or any other cause, the Contractor shall fill the abandoned hole with sand-cement grout and remove the casing in accordance with the Commonwealth of Virginia Health Department Private Well Regulation, Section 3.11. Also, see the attached procedure for abandonment of wells.

C. Outer Casing:

The outer casing and locking cap shall be installed to a depth of at least 3.0 feet and extend above ground to a height of at least 12 inches. The annular space between the outer casing and the walls of the hole shall be filled with cement grout. Acceptable methods of grouting are detailed in AWWA A100-84. After drilling is completed, drilling operations shall not be resumed until grout has properly set.

D. <u>Inner Casing and Screen:</u>

Drilling for the inner casing shall be by an approved method at the required diameter and to the required depth to prevent caving of the hole before or during installation of the gravel pack, well screen and inter casing. The well screen and inner casing shall be lowered into the hole by a method which will allow for control of the rate of fall at all times. The inner casing shall extend a minimum depth of 30 feet. Screen length shall be a minimum of 5.0 feet or as long as needed to reasonably account for seasonal fluctuations of groundwater levels. A threaded or welded plate shall be made of the same material as that used for the screen and casing.

E. Gravel Pack:

The approved gravel pack shall be constructed around the screen by filling the entire space between the screen and walls of the hole in the water bearing stratum. The gravel shall be placed using a method which will ensure continuity of the gravel pack without bridging, voids, or segregation. Dumping filter gravel from the surface of the ground and agitating the well in an effort to settle the filter will not be allowed. The gravel pack shall be installed continuously and without interruption until the gravel has been placed to within 1.0 foot minimum above the top of the screen.

F. Placing Packer:

After the inner casing, screen and gravel pack have been installed, the annular space between the inner casing and walls of the hole shall be sealed using an approved packer up to the bottom of the outer casing. The annular space between the inner and outer casing shall be filled with cement grout.

2.2.2 MATERIALS:

- A. PVC screens and casing shall be flush threaded or have the ability to be connected by other mechanical methods that do not introduce contaminants such as glue or solvents into the well.
- B. Casing and screens of PVC (Fluorocarbon) should be detergent cleaned (not steamed) prior to installation.
- C. Only commercially manufactured screens or slotted casings shall be used to prevent the exposure of fresh PVC (saw cut) edges to the groundwater.
- D. Screens shall be 2.0 inches thermoplastic pipe manufactured by a molding, extrusion or some welding process and conform to ASTM F480. Screens shall be provided with perforations which shall consist of either machine-sawed slots,

or drilled, edged openings free of burns, chipped edges, or broken pieces on the interior and exterior surfaces of the pipe. The pattern of the openings shall be uniformly spaced around the periphery of the screen.

- E. Materials used in the filter pack shall be chemically inert, well rounded and dimensionally stable. Fabric filters shall not be acceptable as filter pack materials. Natural gravel packs are acceptable, if the Contractor has sieve analysis performed to determine the proper screen slot size, and also determines the chemical inertness of the filter pack material in the anticipated environment. The Contractor shall submit to the Engineer the size analysis data for the selected filter pack material.
- F. When the filter pack is in a saturated zone, a minimum of two (2) feet of sodium bentonite pellets shall be placed directly over the filter pack.
- G. Annular sealant above the bentonite clay pellet seal in the unsaturated zone to the frost line shall be an anti-shrink cement mixture, such as type "K" or equivalent.
- H. The concrete cap and apron shall extend outward into a four (4) inch minimum thick apron, extending three (3) feet minimum from the outer limits of the borehole.
- I. The untreated sodium bentonite seal shall be placed by dropping directly into the borehole. If a hollow stem auger is used, the bentonite shall be placed between the casing and the inside of the auger stem. In shallow monitoring wells, a tamping device shall be used to compact the clay sealant. In deeper wells, a small amount of formation water may be used, if required to wash the bentonite down the hole.
- J. All cement mixtures shall be mixed with clean water and placed in the borehole using a tremie pipe (lowering tube).
- K. Formation water shall be used for purging the well. In low yielding water bearing formations, an outside source may be introduced into the well to facilitate well development. Air shall not be used to develop the well.
- L. The filter pack shall be a product of a commercial sand and gravel manufacturer, shall be properly sized and graded for the surrounding soil and water worn siliceous gravel, free of flat or elongated pieced, organic matter, or other foreign matter. The gravel shall be of such size as will allow the maximum flow of water into the well and prevent the infiltration of sand and silt. The gradation of the filter gravel shall be such that the uniformity coefficient does not exceed 2.5.

M. Grout shall be neat cement grout consisting of cement and water with not more than 6 gallons of water per sack (94 pounds) of cement. Bentonite clay may be used in conjunction with neat Portland cement to form a grouting mixture. Any bentonite used must be specifically recommended by the manufacturer as being suitable for use as grout material and cannot exceed 6% by weight of the mixture. Portland cement shall conform to ASTM C150-86.

2.3 <u>SUBMITTALS</u>

- A. The Contractor shall submit to the Engineer and to the Virginia Department of Environmental Quality, Piedmont Regional Office, P.O. Box 11143, Richmond, Virginia 23230, the following documents complete for each well.
 - 1. GW-2 Form
 - 2. Date/Time of Construction
 - 3. Drilling Method and Drilling Fluid Diameter
 - 4. Borehole Diameter and Casing Diameter
 - 5. Well Depth
 - 6. Drilling and Lithologic Logs
 - 7. Casing Materials
 - 8. Screen Materials and Size
 - 9. Casing and Screen Joint Size
 - 10. Screen Slot Size and Length
 - 11. Filter Pack Material, Size
 - 12. Filter Pack Placement Method
 - 13. Sealant Materials
 - 14. Sealant Volume
 - 15. Sealant Placement Method
 - 16. Surface Seal Construction
 - 17. Well Development Procedure

3.0 WATER QUALITY TESTING

3.1 GENERAL REQUIREMENTS

After completing yield and capacity tests for each well, the Contractor shall secure samples of the water in suitable containers, and at sufficient quantity, to have bacterial, physical, and chemical analysis made by an approved testing laboratory. All sampling and analysis shall be performed in accordance with procedures outlined in the latest edition of the EPA Manual of Methods for Chemical Analysis of Water and Wastewater and AWWA Standard Methods for Examination of Water and Wastewater.

3.2 <u>WATER QUALITY PARAMETERS</u>

The initial sampling of the well by the Contractor shall be evaluated for the following parameters:

Groundwater Elevation
pH
Specific Conductance
Nitrate Nitrogen (NO₃)
Ammonia Nitrogen (NH₃)
Total Organic Carbon (TOC)
Chlorides
Fecal Coliform
Total Phosphorus

Results of all initial testing shall be furnished to the Owner and will be used to establish background levels for the monitoring program.

4.0 GROUNDWATER MONITORING

4.1 GENERAL REQUIREMENTS

Groundwater monitoring will begin in the first quarter after approval of the groundwater monitoring network by the Board's staff. Samples shall be taken during the months of March, June, September, and December. Sampling results shall be reported to the Board's Piedmont Regional Office along with the Discharge Monitoring Report by the 10th day of the following month.

4.2 SAMPLING SCHEDULE

At a minimum, groundwater shall be monitored as follows:

Parameter	<u>Units</u>	Monitoring Requirement Frequency	Sample Type
Groundwater Elevation	Feet*	1/Quarter	Measure
pH	SU	1/Quarter	Grab
Specific Conductance	umhos/cm	1/Quarter	Grab
Nitrate Nitrogen (NO ₃)	mg/1	1/Quarter	Grab
Ammonia Nitrogen (NH ₃)	mg/1	1/Quarter	Grab
Total Organic Carbon (TOC)mg/1		1/Quarter	Grab
Chlorides	mg/1	1/Quarter	Grab
Fecal Coliform	N/100 ml	1/Quarter	Grab
Total Phosphorus	mg/1	1/Quarter	Grab

*Groundwater elevations in all wells should be measured to the nearest hundredth of a foot using a referenced datum of mean sea level. Submit groundwater elevations on a site map which depicts groundwater elevations on a site map which depicts groundwater flow direction.

Reports of the groundwater monitoring shall include the analytical detection levels for the above listed parameters. If monitoring information gathered for this facility indicates that there are pollutants that are or may be discharged at a level which will cause or have the reasonable potential to cause an excursion above any applicable State water quality standard or criteria, including narrative standards or criteria for water quality, this permit shall be either modified or alternatively revoked and reissued to include effluent limits necessary to meet water quality standards or criteria.

Following one year of monitoring, the above parameters and frequency of analysis may be adjusted, as appropriate by the Board's staff.

4.3 WELL PURGING PROTOCOLS

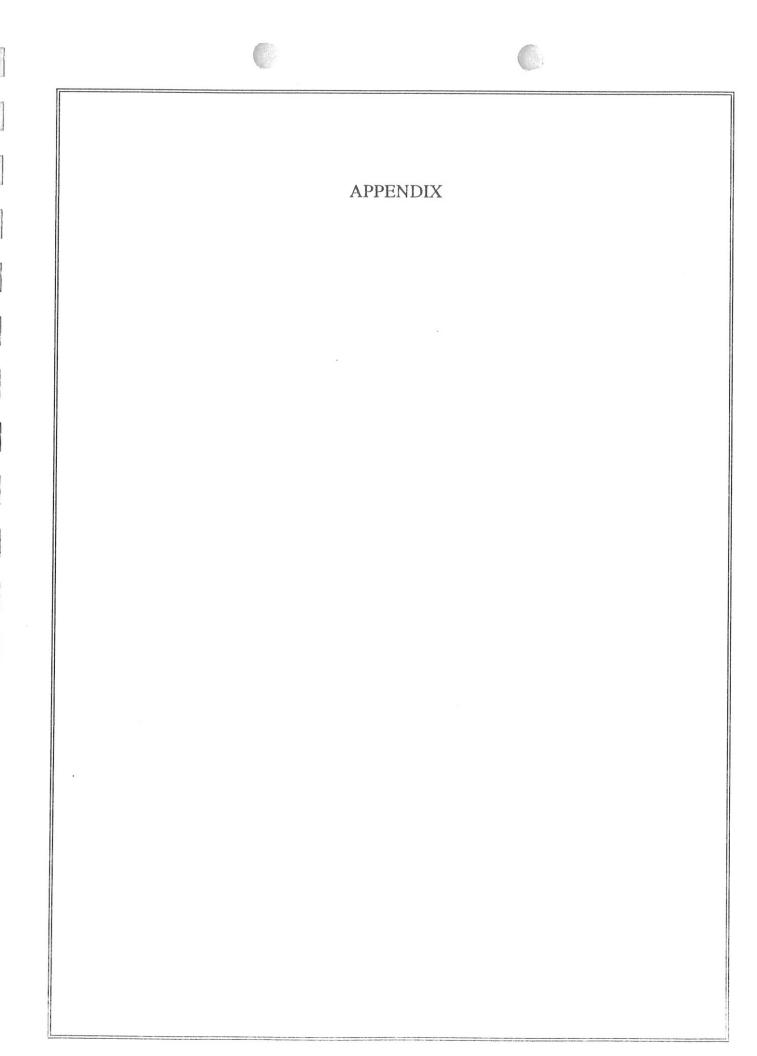
Prior to sampling the groundwater monitoring wells, the following purging procedure shall be used:

Each well shall be purged a minimum of three (3) well volumes with a dedicated baiter.

4.4 FIELD AND LABORATORY OA/QC

The testing laboratory selected for monitoring the groundwater wells shall submit their QA/QC protocols for field and laboratory work for review and apparel by DEQ prior to collection the samples.

5.0 APPLICABLE PUBLICATIONS


- A. American Society for Testing and Materials (ASTM):
 - 1. ASTM C 150-86 Portland Cement
 - 2. ASTM F 480-88A Thermoplastic Water Well Casing Pipe and Couplings Made in Standard Dimension Ratios (SDR).
- B. American Water Works Association (AWWA):
 - 1. AWWA A 100-84 Standard for Water Wells
- C. Commonwealth of Virginia:
 - 1. Health Department Private Well Regulations September 1, 1990.
 - 2. Water Control Board Rules and Standards for Water Wells July 1, 1988
- D. <u>Environmental Protection Agency (EPA)</u>:

EPA: Manual of Methods for Chemical Analysis of Water and Wastewater

VICINITY MAP -HUGUENOT ACADEMY

SCALE 1'=2,000'

Tuesday October 8, 1991

Environmental Protection Agency

40 CFR Part. 136

Guidelines Establishing Test Procedures for Analysis of Pollutants Under Clean Water Act; Final Rule and Technical Amendments

ENVIRONMENTAL PROTECTION 'GENCY

40 CFR Part 138 [FRL 4012-5]

Guidelines Establishing Test-Procedures for the Analysis of Pollutants Under the Clean Water Act

AGENCY: Environmental Protection Agency (EPA).
ACTION: Final rule: Technical amendments.

SUMMARY: This action under the Clean Water Act (CWA) section 304(h) amends 40 CFR part 138 to add clarifying Tootnotes to the lists of approved test procedures, update method citations in Tables IA, IB, IC, ID, and IE to amend the incorporation by reference section of the regulation accordingly, and to correct certain typographical errors and omissions. EFFECTIVE DATE: This amendment becomes effective on October 8, 1991. The incorporation by reference of the publications listed in this notice are. approved by the Director of Federal. Register as of October 8, 1991.

FOR FURTHER INFORMATION CONTACT:
James J. Lichtenberg Environmental
Aonitoring Systems Laboratory. Office
of Research and Development, U.S.
Environmental Protection Agency,
Cincinnati, Ohio 45288, Telephone
Number: (513) 569-7306.

SUPPLEMENTARY INFORMATIONS

I. These technical amendments update the references to analytical methods already approved under section 304(h) to the current editions published by EPA, U.S. Geological Survey, and various standards organizations. No new methods are introduced. EPA has carefully reviewed each cited method for substantive changes between the current editions and the previously cited editions. Methods cited in this amendment that were not previously cited are substantively the same as the approved EPA method and/or were derived from the EPA method.

24532. June 15, 1990) approving the Direct Current Plasma (DCP) Atomic Emission Spectrometric Method as an approved Nationwide Alternate Procedure (ATP), EPA Inadvertently omitted incorporating the reference to the method into § 136.3(b) "Identification of Test Procedures" under "References, Sources, Costs, and Table Citations". This omission is being corrected in a separate notice by adding reference 32, "Direct Current Plasma (DCP) Optical Emission Spectrometric

In publishing the final rule (55 FR

Method for Trace Elemental Analysis of Water and Wastes, Method #AES0029", 1988—revised 1991, Applied Research Laboratories, Inc., 24911 Avenue Stanford, Valencia, CA 91355, Table IB, Note 33 to that section.

On July 3, 1991 (at 56 FR 30519), EPA proposed to eliminate Freon 113 from all of its environmental test methods because of its association with the depletion of the stratospheric ozone layer. This Rule will affect methods approved under 40 CFR part 136 for Parameter 41-Oil and Grease, Le., EPA Method 413.1 and Method 5520B of Cinadard Mathods. In the July 3 proposed rule, EPA recommended a solvent mixture, n-hexane + methyl tertiary butyl ether (80+20), as the substitute for Freon 113 in the gravimetric measurement of oil and grease. Based on the public comments and the results of ongoing research this mixture or another solvent will be selected for inclusion in the Final Rule. EPA, at that time, will approve the selected solvent for use under 40 CFR part 136.

The U.S.G.S. Method for fecal streptococci method 30055-77 cited in Table IA was revised in 1985 to include preparation of the KF Streptococcus Agar by boiling in a water bath to avoid scorching the medium. Therefore, the method is fully acceptable.

II. The EPA Method References have been updated to include the 1983 editorially revised edition of "Methods for Chemical Analysis of Water and Wastes" so that this edition or the 1979 edition, whichever is available to the analyst, may be used.

III. The Standard Methods references in Tables IA, IB, IC, ID, and IE are generally updated to the 17th Edition by today's notice. Each approved method was carefully reviewed for substantive changes between the 16th and 17th Editions. With the exception of the Turbidimetric Method for Sulfate, the 17th Edition Methods were found to be technically equivalent to the approved 16th Edition Methods. Therefore, we are updating the Standard Methods citations to the 17th Edition for all but the Turbidimetric Method for Sulfate which will continue to be cited to the 15th Edition. The list of references incorporated Into this regulation continues to cite the 13th Edition of Standard Methods to support the titrimetric lodine method for sulfide.

Standard Methods has edited certain previously approved EPA 600 Series Methods for Organic Chemicals in Water to its format and published them in the Standard Methods 17th Edition EPA has examined the Standard Methods version of these methods and

found them to be technically the same as the EPA approved methods.
Therefore, EPA by this notice accepts the incorporation by reference of Standard Methods 6210B, 6220B, 6230B, 6410B, 6420B, 6440B, and 6630B for use under 40 CFR. Part 130. These methods are for organic analytes non-pesticides listed in Table 1C and pesticides listed in Table 1D. The listings reflect the numbering system change made in the 17th Edition of Standard Methods.

IV. References in Tables IA, IB, IC, ID, and IE to the American Society for Testing and Materials (ASTM), U.S. Geological Survey (USGS), and or the Association of Official Analytical Chemists (AOAC) Methods have also been updated where appropriate to the most recent editions. The AOAC methods cited reflect the numbering system changes that were made in the 15th Edition of the AOAC Methods.

V. The remaining amendments in this notice are very minor and are typographical or editorial in nature. Tables IA, IB, IC, ID, and IE and the notes to these Tables have been reprinted in their entirety for the convenience of the user.

VL The Administrative Procedure Act, 5 U.S.C. 551, et seq., authorizes an agency to forego notice and comment rulemaking when the agency for good cause finds that notice and public procedure thereon are impracticable, unnecessary or contrary to the public Interest, EPA believes that public comment on these technical amendments is unnecessary because the need for the updates to references and the errors were pointed out and urged by the public; to benefit the public, the updates should be approved and the errors should be corrected as soon as possible. Therefore, notice and public procedure is impracticable. unnecessary, and contrary to the public interest and does not apply to this Technical Amendment notice.

VIL Executive Order 12291 requires each Federal agency to determine if a regulation is a major rule as defined by the order and to prepare and consider regulatory impact analysis for such rules. This technical amendment is not a major regulatory action because it will not have a major financial or adverse impact on the community.

The Regulatory Flexibility Act requires (5 U.S.C. 601 et seq.) EPA to consider the effect of regulations on small entities. This technical amendment will not have a significant effect on a substantial number of small systems.

The Paperwork Reduction Act seeks to minimize the reporting burden on the

regulated community, as well as minimize the cost of federal information collection and dissemination. This technical amendment contains no information collection activities and, therefore, no Information Collection Request (ICR) will be submitted to the Office of Management and Budget . (OMB) for review in compliance with the Paperwork Reduction Act, 44 U.S.C. 3501 et seq.

List of Subjects in 40 CFR Part 136

Incorporation by reference, Water pollution control.

Signature:

Erich Brotthauer.

Assistant Administrator. Office of Research and Development (RD-872)

PART 136—[AMENDED]

The following amendments are made to 40 CFR part 138.

1. The authority citation for part 138 continues to read as follows:

Authority: Secs. 301, 304(h), 307, and 501(a) Pub. L. 95-217, Stat 1589, et seq. (33 U.S.C. 1251, et seq.) (the Federal Water Pollution Control Act Amendments of 1972 as amended by the Clean Water Act of 1977].

2. In § 136.3, Tables IA, IB, IC, ID, and IE and paragraphs (b), (c), (d) and (e) are revised to read as follows:

§ 136.3 Identification of test procedures.

TABLE IA.—LIST OF APPROVED BIOLOGICAL TEST PROCEDURES

		α.	Reference	(method Ha. o	or pegal
Parameter, units and method	Method ¹	EPA *	Standard methods 17th ed.	ASTM	USGS *
scterie: 1. Cofform (fecal), number per 100 ml	MPN, 5 tube, 3 dillutions or, membrane filter	p. 132	9221C		
Colform (fecal) in presence of chlo- nne, number per 100 ml. Colform (total, number per 100 ml.)	(MF) 4, single step. MPN, 5 tube, 3 dilution; or, MF4, single step 4.	p. 124 p. 132 p. 124 p. 114	92220 9221C 9222D 9221B		B-0050-85.
4. Cofform (total), in presence of chlo- rine, number per 100 ml. 5. Fecal streptococci, number per 100	stop or two step. MFN, 5 tube, dilution; or MF4 with enxichment. MPN, 5 tube, 3 dilution; MF4; or, plate	р. 106 р. 114 р. 111 р. 139	92228 92218 92228+8.5C 92308		B-0025-85.
mL .	count	p. 136 p. 143	9230C , ,		8-0055-85.

Table IA notes:

1 The method used must be specified when results are reported.

8 Border, R.H., and J.A. Winter, eds. 1978. "Microbiological Methods for Monitoring the Environment, Water and Waste." Environmental Monitoring Systems Lisbonstory, U.S. Environmental Protection Agency, EPA-600/8-78-017.

8 Britton, L.L., and P.E. Gresson, P.E., eds., 1999. "Methods for Collection and Analysis of Aquetic Biological and Microbiological Samples," Techniques of Water Resources Investigations of the U.S. Geological Survey, Techniques of Water Resources Investigations, Book 5, Chapter A4, Laboratory Analysis, U.S. Geographic Survey, U.S. Department of Interior, Reston, Virginia.

4 A 0.45 jurt membrane Riser (MF) or other pore size certified by the menufacturer to fully fetaln organisms to be cultivated, and to be free of extractables which could interior growth.

8 Because the MF technique usually yields low and varieble recovery from chlorinated westewaters, the Most Probable Number method will be required to resolve arm controversies.

TABLE 18.—LIST OF APPROVED INORGANIC TEST PROCEDURES

*		Refer	or paga)		
Parameter, units and method	EPA ⁴	Std. methods 17th Ed.	MTZA	USGS #	Other
	1				
1. Acidity, as CaCOs, ang/L:					
Electrometric and point or phenolphthalein and point	305.1	2310-B(4a)	D1067-88		
2. Alkalinity, as CaCOs, mg/L;					
Electrometric or colorimetric utrition to pH 4.5 manual or	310.1	2320-B	D1067-88	I-1000-85	_ 973.43.°
Autometed	310.2			1-2030-85	- {
3. Aluminum—Total 4, mg/L: Digestion 4 followed by:					
AA direct expiration	2021	31110		1-3051-85	
AM furnece	2022	31138			
Inductively coupled pleams (ICP)	200.7 4				
Direct current pleams (DCP), or	J		D4190-88		Note 34.
Colorimetric (Eriochrome cyenine R)		\$500-A1 D			
4. Ammonia (aa N), mg/L;	1	1	1	1	١ .
Manual distillation (at pH 9.5) a, followed by	350.2	4500-14 L B		_	973.49.0
Nesslerization	350.2	1500-14 L C	D1426-79(N)	1-3520-85	973.45.6
Titration	350.2	4500-NH & E			
Electrode	250.5	4500-NH G	D1428-79(C)		
Autometed phenete or	350.1	4500-NH6 H	D1426-79(C)	1-1523.05	
Automated electrode	7 00 011	7			Hote 7.
b. Antimony—Total 1, mg/L:					
Digestion 4 followed by:					
AA direct aspiration	204.1	31118			
AA furmedit, or	204.2	31118			
CP	200.7 •	3120 B			
6. Araento-Tova *, mo/L:					
Digestion 4 lotared by:	204.5		1.0		
AA pesecue hydride	204.3	3114	D2972-64(B)	L0062.85	
M lumece	205.2	3113-4d			
KP, or	200.7	0.10-0			

TABLE 18.—LIST OF APPROVED INCREANIC TEST PROCEDURES—Continued

Pacameter, units and method	EPA		rience (method No. e	r pega)	
	CI A	Std. methoda 17th Ed.	ASTM	USGS *	Otha
Colorimetria (SDOC)					
7. Barium—Total 4. rog/L:	200.4	J500-As	D2972-84(A)	1-2060-85	_
Digestion 4 followed by:	1				l
At direct septeaton	206.1	3111 D		1 2004 46	
M turnece	200.2	3113 B		1-3064-85	
107, or	200.7 °	3120 B.			
8. Berytium—Total 4, mg/L; Digestion 4 followed by:					Note 34.
An direct expiration					
AA lumede	210.1	31110	D3645-84-88(A) _	1-3005-05	_
ICP	210.2	3113 B			
W. or		31200	D4190-88		
Colorimetric (aluminon)		3500-8« D	01100-00		Note 34.
), Blochemical oxygen demend (BOO ₄), mg/L:				***************************************	
Descrived Oxygea Depletion	405.1	5210		1-1578-78 "	973.44 ° p.
J. Boron—Total, mg/L; Colorimetric (curcumin)		1.			р.
ICP, or	2123	4500-8 B		I-3112-05	
DCP	200.7	3120 B			_
. Bromide, mg/L:	-		D4190-88		Note 34.
Tritrimetric	220.1	1	D1716 82	1 4405 55	
			D1246-82	1-1125-85	p. S44.19
Cadmium—Total 4, mg/L; Digestion 4 followed by:		1	(CX1388)		
A direct aspiration	213.1	3111 B or C	D3557-90 (A or B)_	1-3135-85 or 1-	074 27 8 0
				#1135-65 OF I-	974.27 " p. :
M furnion	213.2	31138		-100 000	
CP	200.74	3129 8	***************************************	I-1472-85	
DCP			D4190-00		Note 34.
Votrametre (Ditrimone)	<u> </u>		D3557-90(C)		
Calcium—Total 4, mg/L; Digestion 4 followed by:		1500-Cd D			-1
M direct aspiration	215.1	21110	Dett to the		1
ICP	200.7 0	3111 8	DS11-48(B)	1-3152-85	
DCP, or	72001	31000			-
Thirnetic (EDTA)	215.2	3500-Ca D	DS11-88(A)	***************************************	Note 34
Carbonaceous biochemical oxygen demand (C800s), mg/L *		5210 B	W11-0004		
Principled Oxygen Depletion with ediffication includes					1 .
Chemical exygen demand (COO), mg/L; Titrimetric, or	410.1	5220 B	D1252-88	1-3560 or	973.46 1 A 1
	4102 or			1-3562-85	
Spectrophotometric, manual or autometed	410.3	-			4
Chloride, mg/L:	410.4	-		1-3561-85	_ flotes 13 or 1
Titrimetric (silver nitrate)		4500-CI B	D512-89(B)	1 1100 00	1.
or (Mercuric nitrate), or	325.3	4500-CI C	D512-89(A)	I-1183-85	973.51.4
Colorimetric, menual or				I-1187-85	9/351.
Automated (Ferricyanide)	325,1 or	4500-CI C	34,2 34(0)	I-2187-45	1 .
Colorina Table 11 is a second	725.2				7
Chorine—Total residuel, mg/L; Titrimetric:			- 1		1
Amperometric direct	330.1		D1253-76(A)		1
	330.3	4500-CI B	D1253-76(B)		4
Back thration either end point 18, or	220 5	lism or a	(1965) Part 16.3.	•	1
OPO-FAS	330.4	4500-CI C		1	-
Spectrophotometric, DPD	530.5	4500-CI F			1
or Electrode	1 300			,	Not- 15 .
Chromium VI dissolved, mg/L; 0.45 micron fitration followed					Note 16.
Υ:	İ				1
At chelation-extration, or	218.4	3111 A		1-1232-85	-
Colorimetric (Diohenylcarhanida				I-1230-85	307B.17
Chromium—Total 4, mg/L; Digestion 4 followed by:			. [1
AA direct aspiration	218.1		D1687-86(D)	1-3236-85	974.27.8
M furnice	218.3	3111 C			1
IC ^o	216.2	31138			-
DCP, or	200.7 *	3120 B	D4190-88		1
Colorimetric (Diphernylcarbazida)			D1687-86(A)		Hote 34.
Cobeth-Total 4, mg/L: Dioestion 4 followed by		1			1
AA direct aspiration	219.1 or C	3111 B (A or B)	03558-90_	1-3239-35	D 37.°
AA AITHIGG	219.2	3113 8			1
CP, α	200.7 4	3120 B		1 1	
Color plannum cobert units or dominant wavelength, hus,			04190-88		Note 34.
this ance purity:					
Colorimania (ADMI), or	110.1	2122 5	. [
(Platroum cobalt), or	110.1	2120 E		I-1250-85	Note 18.
Sentabelialeum					

1. .

TABLE IB.—LIST OF APPROVED INORGANIC TEST PROCEDURES—Continued

Parameter, units and method	EPA!		ence (method No. or p		Other
Smattheter, frame and amenon.	<i>G</i> -//	Std. methods 17th Ed.	ASTIA	USGS *	
Copper—Total 4, mg/L; Digestion 4 followed by:				1 0070 061	074771 = 3
AA direct expiration	220.1	3111 B ∝ C	D1688-90 (A or B)_	3270-85 or F	974.27 ° p. 3
All furnice,	220.2	_ 3113 B			_
ICP	200.7 6	3120 B			-
DCP, or			D4190-68		Hote 34.
Colorimetric (Neocuproine), or		3500-Cu D or E	D1688-84(88)(A)		
(Bioinchoninete)					Note 19.
Cycanide—Total, mg/L:					1
Manuel distillation with MgCl ₄ followed by		4500-CH-C		···	p.22.
Titrimetric, or	335.2	4500-C11-0	D2036-89(A)	L-1000-05	
Spectrophotometric, manual or	335.3	4500-01-6	D2036-89(A)	1 00 70 70 1111111111111111111111111111	
Automated **	3333	-	02033-04/. 1		
Cyenide emendeble to chlorinetion, mg/L; Menual distriction with MgCl _e followed by titrimetric or Spec- trophotometric.	335.1	4500-C11-G	(B)#8-5005G.	•	-
Ehrolla_Total mall .			.		1
Manual distillation a followed by		4500-F-8			
Electrode, menual or	340.2	4500-F-C	D1179-88(B)	1 1007 55	- '
Automated		1600 7 7	D4470 55/4:	1-1327-85	- ·
Colorimetric (SPADNS)	340.7	4500-F-0	D1179-8C(A)		-
	2102	4500-F-E	(1988)_		
or Automated complexions.	340.3	1500-F-E			J
Gold—Lodit , tudy C; Didespoul , lociowed ph:	231.1	3111 8			⊣'.
AA furnece, or	231.2	4111 0			
DCP					Plote 34.
Hardness-Total, as CaCOs, mg/L;				80	
Autometed colorimetric	130.1				
Titimetric (EDTA), or Ca plus Mg as their carbonates, by inductively coupled plasma or AA direct aspiration. (See	130.2	2340 C	D1126-86 (1990)	I-1338-85	973.528.
Parameters 13 and 33).					
Hydrogen Ion (pH), pH units: Electrometric, measurement, or	150.1	4500-11*4	D1293-84 (A or B)	1-1585-85	973.41.8
Electronistic inegitations or			(1990).		
Autometed electrode				·	Note 21.
kidium-Total 4, mg/L; Digestion 4 followed by:					
AA direct aspiration or	235.1	3111 B			
AA furnior	235.2				
kon-Total.4, mg/L; Digestion 4 followed by:		3111 B or C	D1068-90 (A or B)	1_7381-85	973.27.4
AA direct aspiration	236.1	3113 8		1 0001 00	
AA furnace	200.7 4	3120 B			
DCP. or	12001				Note 34.
Colorimetric (Phenenthroline)		3500-F	D1068-90(D)		Note 22.
Kyeldehl nitrogen—Total, (es N), mg/L;		4500-N org B or C		· · · · · · · · · · · · · · · · · · ·	_
estion and distillation followed by:					973.48.0
Titration	351.3	4500-NH4 E	D3590-89(A)		ALTVO'.
Neeslerization	351.3:	4500-NH, C	D3590-89(A)		
	351.3	4500-NH F or G		1-4551-784	
Autometed phenete	351.1	4500-1414 11	D3590-89(B)	1 -331-10	
Semi-automated block digestor, or	351.2	***************************************	D3590-89(A)		
Potentiometric	351.4		1		
Leed—Total 4, mg/L: Digestion 4 followed by: At direct aspiration	239.1	3111 B or C	D3559-00 (A or B).	1-3333-85	974.27.2
W pract sebisou	239.2				
ICP	200.7 6	3120 B		·	
DCP			D4190-88		Plote 34.
Voltametry 11, or		1606 5: 5	D3559-90(C)	-	
Colorimetric (Dithizone)	-	3500-Pb D	-		
Megnesium—Total 4, mg/L; Digestion 4 followed by:	2121	3111 8	D511-88(B)	1-3447-85	974.27.8
At direct expiration	242.1	3111 8	0011-00(0)		·
ICP	1200.1	31240			Note 34.
Gravimetric		3500-ma D	D511-77(A)		
Manganese-Total 4, mg/L: Digestion 4 followed by:					974.27.1
At direct aspiration	.243.1	3111 B or C	_ D859-90 (A or B)-	1-3454-85	4/42/.
AA furnece	243.2	3113 B	-		
ICP	_ 200.7 °	J120 B	D4190-88		Plote 34.
DCP, or		3500-Mn 0	D858-84(A) (1988)		920.203.
Colorimetric (Persultate), or	-		0000-0-10-0-11-0-001		Note 23.
(Periodeta)	1				
	245.1	3112 8	_ D3223-86	- 1-3452-85	977.22.
Cold vacor, manual or			1	1	1
Cold vapor, manual or	245.2			-1	

Truine IB.—LIST OF APPROVED INORGANIC TEST PROCEDURES—Continued

Parameter, units and method	5711	Role	mace (method Ha, or	pege)	
C. Br. ast behalf. United and Weddyd	· EX1	Std. methods 17th Ed.	. ASTM	-te3gg ≭	Other
M fumace	246.2	2113 8			
ICP, or	200.7 4	1120 8			-
DCP	200.7	3120 0			14ota 34.
1. Nickel—Total 4, mg/L; Digestion 4 followed by:					11.500 0 1.
An direct sephedon	249.1	3111 8 or C	D1686-90 (A or B)_	1-3499-85	
M furnios.	249.2	J113 B			
CCP. pr	200.7 *	3120 B			_
Colorimetric (Heptaxime)		2500-14 D	D4190-66		Hote 34.
d. Hibrite (ns. H), mg/L;					-
Colorimetric (Brucine suttata) or Mitrata-nitritia N eninus Nitri	te 352.1		D992-71		973.50 4, 4190
N (See personeters 39 and 40)					p. 25.*
Nitrate-nitrite (ne N), mg/L; Cadralum reduction, Menuel or	353.3	1500 110 5	Danas agus		
Automated, or	251.2	4500-110, E	D3867-90(B)	1-45-45-05	
Autometed hydrachre	357.1	4500-HQ, H	D3867-90(A)	14045-45	-
0. Nitrite (se N), mg/L; Spectrophotometric;		1			
Manual or	2547	4500-HO ₆ B	D1254-67		Note 25.
Autometed (Dispotantion)				1-4540-05	_
Oll and grease—Total ascoverable, rog/L;					
Gravimetric (extraction)	413.1	5520 B			-
Combustion or addition	415.1	5310-8	D2579-85 (A or B)_		973.47 8, p. 14.
2. Orpanic nkrogen (as H), mo/L:	70.	10-0	1		M. 741 - 1 14.
Total Keldahi N (Pacameter 31) minus amonia N (Paramet	oc .	1	7		1
· 4)					
A. Orthophosphete (se P), mg/L; Ascorbic acid method:	1	1			
Autometed or	565.1	4500-P F		1-4601-85	973.58.1
Manual single respent, or	365.3	4500-P E	DS15-88(A)	***************************************	973.55.8
5. Osmium—Total 4, mg/L; Digestion 4 followed by:	3027			-	
A direct aspiration, or	252.1	3111 D	•		1
AA furnace	252.2				
L. Cxygen efesoived, mg/L;		4500-O C			
Winkler (Azidec modification), or	260.2		D888-81(C) (1988) .		973.458.9
Electrode	360.1	4500-0 G		I-1576-78 °	
W quest sabustou or togethaut togethaut togethaut by:	253.1	3111 8			p. \$27.44
AA furnace	253.7	31118			p. 828.10
DCP					Note 34
9. Phonole, mg/L: Manuel distilled on #4	420.1		D1783-80 (A or B)_		Note 27.
Followed by:		1			
Colorimetric (MAP) manuel, or	420.1				Note 27.
2. Phosphorus (elemental), mg/L; Gas-liquid chrometegosphy	- 4312	1			Note 28.
1. Phosphorus—Total, ma/L:				**************************************	1101112
Persultate digestion followed by:	365.2	4500-P-8,5			973.55.1
Menual or	305.2 or	4500-P-E	DS15-88(A)		_
Autometed ascorbic acid reduction, or	305.3	1500 D 5		1 1000 00	
Semi-automated block ofgreator	365.1 365.4	4500-P-F		1-4600-85	973.56.0
I. Pletinum—Total 4, mg/L; Digestion 4 followed by:				•	1.
An direct aspiration	255.1	3111 8			
M furnace	255.2	ļ			<u>.</u>
DCP		 			Note 34
2. Potessium—total 1, mg/L; Digestion 4 followed by: At direct aspiration	0504			1 8000 85	277.57
ICP	258.1	3111 8		1-3630-85	973.53.
Plarme photometric, or		3500-K D	D1428-82(A)		
Colorimetric (Cobaltinitosse)					3178.17
J. Residue—Total, mg/L; Gravimetric, 103-105"	1603	2540 B		1-3750-05	-
. Residue—Biterable, mg/L; Grevimetric, 180*	160	2540-C		1-1750-85	-
. Residue—nontiferable, (TSS), mg/L; Gravimetric, 103-105 post washing of residue.	160.2	2540-0		L-1765-45	-
Residue—settleable, mg/L; Volumetric, (Imhort cone), or gr	160.5	2540 E			
victivities.	1000	2540 E	(Taire		7.
. Residue—Volscile, mg/L; Gravimetric, 550*	160.4	2540 E	. :-	L3753-85	
. Rhodium—Total 4, mg/L: Digestion 4 followed by:		:-	1		
AA direct aspiration, oc	265.1	3111 8			-
. Ruthenium—Total 4, mg/L; Digestion 4 followed by:	265.2	1			
A direct sepiration, or	257.1	3111 8			
AA furnace	257.2				
					1
. Safemium—Fotal 4, mg/L; Digestion 4 followed by:			1		
	270.2	3113 9			

TABLE 18.—LIST OF APPROVED INORGANIC TEST PROCEDURES—Continued

		Bale			
Parameter, write and method	EPA1	Sid, methods 17th Ed.	ASTM ·	UOGS #	Other
51. SECH—Distrothed, eng/L; 0.45 micron fittation followed by:					
Colormatric, Manual or	370.1	4500-SID	Dasa-99(B)	I-1700-85	
Autometed (Molyhdaellicele), er	200.7 4	-	-	1-2700-85	_
2. Silver—Total ⁶⁴ , mg/L; Dignetion ⁴ followed by:	770.7	-			
AA direct ampiration	272.1	3111 8 or C		1-3720-85	973.27 °, p. 37.
AA homes	722	3113 6		70120-03	- 1 41 JZ1 , p. 31.
Colorimetric (Diahtzone)	ļ	-			3108.11
ICP, or	200.7 *	-			
1. Socium—Totel 4, mg/L; Digestion 4 followed by:					Hote 34.
A direct aspiration	273.1	3111 8		I error as	era e a s
i :	200.7 0	3120 8		1-5735-85	973_54.4
DCP, or					_ Note 34
Flame photometric		3500-Ha D	D1428-82(N)		
C. Specific conductance, micromhos/cm at 25° C; Wheetelone bridge	1				
5. Surfete fee SOJ, ma/L:	120.1	2510 B	D1125-82(A)	1-1700-95	_ 973.4Q.º
Automated colorimetric (bartum chloranillate)	375.1				• • • • • • • • • • • • • • • • • • •
Graylmetric, or	375.3	4500-SO ₄ -1 C or	DS16-82(A) (1968)		925.54.
T. 11.5		D.			
Turbidimetric 5. Sutfide (se S), mg/L;	375.4	-	DS16-06	ļ	_ 426C, 50
Titrimetric flodinet, or	376.1	una e-de:		1	
Colorimetric (mediylene blue)	376.2	4500-6-4 E		1-3640-85	228A.41
. Suffite (es SOJ), mg/L;					- 1
Tikrimetric (fooline-iodeta)	377.1	4500-6C,-1B	D1339-84(C)		_ '
3. Surfactania, mg/L:					
Colorimetric (methylene blue)	425.1	5540 C	D2330-86		_ · ·
C: Thermometric	170.1	2550 B			
Thelburn-Total 4 mg/1 - Dinection 4 followed by	170.1	2550 8			_ Note 32
At direct aspiration	279.1	3111 B			1
AA RITTIECEL OF	279.2				
The Total A marks Disable Addition	200.7 5				-
Tin—Total 4, mg/L; Digestion 4 followed by: AA direct aspiration, or					
AA furnice	282.1	3111 8		1-3850-78 °	
L Titanium-Total 4, mg/L: Diosetion 4 todowed by	4022	31130			• •
AA direct aspiration	283.1	3111 D			
AA furnios	283.2			***************************************	_
DCP				***************************************	Note 34.
Turbidity, NTU: Nephelometric				200000000000000000000000000000000000000	
Vanadium—Total 4, mg/L; Digestion 4 followed by:	180.1	2130 8	D1889-854	1-3860-85	_
AA direct aspiration	205.1	3111 D			
AA furriede	206.2	31110	*******************************		-
KP	200.7 •	3120 B			
Coloranda K. K. anid			:D4190-88	***************************************	- Note 34.
Colorimetric (Gelfic soid)		3500-V D	(A)48-ETEED		
. Zno-Total 4, rng/L; Digestion 4 followed by:		1	(1005).		
AA direct aspiration	260.1	3111 (B er C)	D1691-90 (A or B)_	L-9001_#5	974.27 ° p. 37.5
AA furnice	259.7	2111 KP 61 CA	CTOMI-AN (VI OL B)	Law-92	H14-C1 - Pr 31.
ICP	200.74	3120 B]
DCP, or			D4190-88		Note 34
Colorimetric (Otthizone) or		3500-Zn E			٠
	***************************************	3500-Zh F			Note 31

Table IB notes:

1 "Methods for Chemical Analysis of Water and Westes", Environmental Protection Agency, Environmental Monitoring Systems Laboratory-Cincinnet (EMSL-CI), EPA-600/4-79-020, Revised March 1983 and 1979 where applicable.

2 Fishman, M. J., et al, "Methods for Analysis of Inorganic Substances in Water and Fluvial Sediments," U.S. Department of the Interior, Techniques of Water—Resource Investigations of the U.S. Geological Survey, Denver, CO, Revised 1980, unless otherwise stated.

3 "Official Methods of Analysis of the Association of Official Analysis of Chemists," methods menual, 15th ed. (1990).

4 For the determination of total metals the sample is not Rivered before processing, A digestion procedure is required to solubitize suspended metals and to destroy possible organic-metal complexes. Two digestion procedures are given in "Methods for Chemical Analysis of Water and Waster, 1979 and 1983;" One (Section 4.1.3), is a vigorous digestion using hitric sold. A less vigorous digestion using hitric sold. A less vigorous digestion using hitric and hydrochloric, solds (section 4.1.4) is preferred; however, the enalyst should be caudioned that this mild digestion may not suffice for all samples hypes, Particularly, it is colorimetric procedure is to be employed. It is necessary to ensure that all organic-metalsic bonds be broken so that the metal is in a reactive state, in those situations, the vigorous digestion is to be preferred melaling and that all organic materials would also benefit by this vigorous digestion. Use of the graphilia furnace lectricus, inductively coupled plasms, as well as determinations for certain elements such as anienic, the noble metals, mercury, selection, and litanium requires a modified digestion included in one of the other approved references is different than the above, the EPA procedure must be used.

HOTE If the digestion included in one of the other approved references is different than the above, the EPA procedure must be used.

Note: If the digestion included in one of the other approved references is different than the above, the EPA procedure must be used.

Dissolved metals are defined as those constituents which will pass through a 0.45 micron membrane filter. Following filtration of the sample, the referenced procedure for lotal metals must be followed. Sample digestion for dissolved metals may be omitted for AA (direct aspiration or graphite furnece) and ICP analyses. provided the sample solution to be analyzed meets the following criteria:

a has a low 0000 (<20)

b is visibly transparent with a turbidity measurement of 1 NTU or less

Tr. is coloriess with no perceptible odor, and

d. Is of one liquid phase and kee of particulate or suspended matter following additication.

The full lexit of Method 200.7, "Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes," is given

* The full text of Mediod 200,7, "Inductively Coupled Plasma Atomic Entranol Spectrometric Method for Titled Common Analysis of Water and Wastes," is given at Appendix C of this Part 136.

* Manual distillation is not required X compensivity data on representative effuent samples are on company file to show that this prefinitery distillation step is not pecessary; however, menual distillation, will be required to resolve any controversies.

1 Ammonia, Automated Electrode method, industrial Method Number 379-75 WE, dated February 19, 1976, (Bran & Luebbe (Technicol) AutoAnalyzor It, Bran & Luebbe Analyzing Technologies, Inc., Elmsford, N.Y. 10523.

4 The approved weethod is that cited in "Methods for Determination of Inorpanic Substances in Water and Fluvial Sediments", USGS TWRIt, Book 5, Chapter A1 (1979).

American Hedonal Standard on Photographic Proceesing Effluents, Aor, 2, 1975, Available from ANSI, 1400 Broadway, New York, NY 10018,
 Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency," Supplement to the Eliteenth Edition of Standard Methods for the Examination of Water and Wastewater (1901).
 The use of normal and differential pulse votage ramps to increase sensitivity and resolution is acceptable.

11 The use of normal and differential pulse voltage ramps to increase sensitivity and resolution is acceptable.

12 Carbonaceous biochemical diggers demand (CBOO) must not be confused with the traditional BOO, seet which measures "total BOO," The addition of the nitrification inhibitor is not a procedural option, but must be included to report the CBOO, parameter, A discharger whose permit requires reporting the traditional BOO, may not use a mitrification inhibitor in the procedure for reporting the results. Only when a discherger's permit specifically states CSOOs is required, can the permittee

may not use a natrication inhibitor.

18 OKC Chemical Oxygen Demend Method, Oceanography International Corporation, 512 West Loop, P.O. Box 2980, College Station, TX 77840,

18 OKC Chemical Oxygen Demend Method, Oceanography International Corporation, 512 West Loop, P.O. Box 2980, College Station, TX 77840,

14 Chemical Oxygen Demend, Method 8000, Hach Handbook of Water Analysis, 1979, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.

18 The back Ministor method will be used to resolve controversy.

14 Orion Research Instruction Menuel, Residual Chlorine Bectrode Model 97–70, 1977, Orion Research Incorporated, 840 Memorial Drive, Cambridge, MA 02138,

The calibration graph for the Orion residual chlorine method must be derived using a respect blank and three standard solutions, containing 0.2, 1.0, and 5.0 ml

0.00281 N potateium fodats/100 ml solution, respectively.

17 The approved method is that cited in Standard Methods for the Examination of Water and Wastewater, 14th Edition, 1976.

The approved method is that cited in Standard Methods for the Examination of Yaser and Yasarewise, 74th Exploit, 1975.
 Resional Council of the Paper Industry for Air and Stream Improvement, (inc.) Technical Bulletin 253, December 1971,
 Cooper, Biocincholnete Method, Method 8506, Hach Handbook of Water Analysis, 1979, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537.
 After the menual distillation is completed, the autoenstyzer meniolds in EPA Methods 335.3 (cyanide) or 420.2 (phenois) are simplified by connecting the resemble line directly to the sampler. When using the meniold setup shown in Method 335.3, the buffer 6.2 should be replaced with the buffer 7.6 found in Method

81 Hydrogen fon (pH) Autometed Electrode Method, Industrial Method Humber 378-75WA, October 1976, Bran & Luebbe (Technicon) AutoAnalyzer II, Bran &

Luebbe Analyzing Technologies, Inc., Emeford, N.Y. 10523,

** fon, 1,10-Phenenthroline Method, Method 8008, 1980, Hach Chemical Company, P.O. Box 389, Loveland, CO 80537,

** Manganese, Periodate Oxidation Method, Method 8034, Hach Handbook of Wastewater Analysis, 1979, pages 2–113 and 2–117, Hach Chemical Company, El Mangenese, P Loveland, CO 80537.

Loveland, CO 80537,

** Wershaw, R.L., et al, "'Methods for Analysis of Organic Substances in Water," Techniques of Water-Resources Investigation of the U.S. Geological Survey,
Book 5, Chapter A3, (1972 Revised 1987) p. 14.

** Nitrogen, Nitrite, Method 8507, Hech Chemical Company, P.O. Box 389, Loveland, CO 80537.

** Just prior to distillation, adjust the suffurio-acid-preserved sample to pt 4 with 1 + 9 NaOH.

** The approved method is cited in Standard Methods for the Examination of Water and Wastewater, 14th Edition. The colorimetric reaction is conducted at a pt of 10.0±0.2. The approved methods are given on pp 578–61 of the 14th Edition: Method 510A for distillation, Method 510B for the manual colorimetric procedure, or Method 510C for the menual spectrophotometric procedure.

** REF. Addison and R.G. Addman, "Direct Determination of Elemental Phosphorus by Gas-Uquid Chromatography," Journal of Chromatography, vol. 47, No. 3, pp. 421–426, 1970.

pp. 421–426, 1970.

as Approved methods for the analysis of silver in industrial westewaters at concentrations of 1 mg/L and above are inadequate where alliver exists as an inorganic halide. Silver halides such as the bromide and chloride are relatively insoluble in respents such as nitric acid but are readily soluble in an aqueous buffer of sodium thiosutfate and sodium hydroxide to pH of 12. Therefore, for levels of silver bove 1 mg/L, 20 mL of sample should be distured to 100 mL by adding 40 mL each of 2 M NauSyO₂ and NaOH. Standards should be prepared in the same menors, For levels of silver below 1 mg/L; the approved method is that cited in Standard Methods for the Examination of Water and Wastewater, 15th Edition.

The approved method is that cited in Standard Methods for the Examination of Water and Wastewater, 15th Edition.

Stevens, H.H., Ficks, J.F., and Smoot, G.F., "Water Temperature—Influencial Factors, Field Measurement and Data Presentation", Techniques of Water-Bresources Innestigations of the U.S. Geological Survey, Book 1, Chapter D1, 1975.

Tong, Zinozi Method, Method 8009, Heach Handbook of Water Analysis, 1979, pages 2–231 and 2–333, Hach Chemical Company, Loveland, CO 80537, St. "Direct Current Plasma (DCP) Optical Emission Spectrometric Method for Trace Elemental Analysis of Water and Wastes, Method AES0029," 1986—Revised 1991, Applied Revearch Laboratories, Inc., 24911 Avenue Stanford, Valencia, CA 91355.

TABLE 1C.—LIST OF APPROVED TEST PROCEDURES FOR NON-PESTICIDE ORGANIC COMPOUNDS.

		EP	A Method N	lumber s.r		
Pacametect	GC .	. GC/MS	HPLC	Standard methods 17th Ed.	ASTM	Other :
1. Acenephthene	610	. 625, 1625	610	6410 B, 6440 B	D4057-07	
2. Apencyhdylene		.625, 1625		6410 B, 6440 B	D4657-87	1
3. Acrolein	603	4 604, 1624		01100.07100	0.031-01	
4. Aaylonitrise	. 603	4 624, 1624		1		1
5. Anthracene	610	625, 1625		1	D4657-87	1
6. Bertzene	602	624, 1624	1	6210 B, 6220 B	0001-01	
7. Benzidine .		625, 1625		02100,02200	1	Note 3, p.1.
8. Bertto(a)andyracena	610	625, 1625	1	6410 B, 6440 B	D4657-87	11004 S. p. 1.
9. Benzo(a)pyrane		625, 1625	1		D4657-87	
10. Berozo(b) fluoranthene	610	625, 1625			D4657-87	
11. Berco(g.tu)perylene	610	625, 1625	1	6410 B. 6440 B	D4657-87	
12. Benzo(k) fluoranthene	610	625, 1625	1 7 7 7	6410 B, 6440 B	D4657-87	
13. Berrryl chloride	0.0	000, 1000	1		10.00	Hote 3, p.130;
				1		Note 6, p. S10:
14. Berayl butyl phthalate	608	625, 1625		6410 8	İ	1.0.0 % p. 0.10.
15. Bis(2-chloroethoxy) methene		625, 1625		6410 B		
16. Bis(2-chloroedryl) ether	611	625, 1625		6410 B	1	
17. Bis (2-ethylhexys) photostate	606	625, 1625		6410 8, 6230 8		
18. Bromodichloromethane	601	624, 1624		6210 B, 6230 B	1	
19. Bromoform	601	624, 1624		6210 B, 6230 B		
20. Bromomethane	601	624, 1624		6210 B, 6230 B		
21. 4-Bromopherrylpherryl ether	611	625, 1625		6410 8		
22. Carbon letrachloride	601	624, 1624		6230 B, 6410 B		Hote 3, p.130.
23. 4-Chloro-J-methylohenol	604	625, 1625		6410 8, 6420 8		
24. Chloroberzyne	601, 602	624, 1624		6210 B, 6220 B		Note 3, p.130.
	.			6230 B		
25. Chloroethene	601	624, 1624		6210 B. 6230 B		
26. 2-Chloroethythinyl ether	601	624, 1624		6210 B, 6230 B	1	1

TABLE 1C.—LIST OF APPROVED TEST PROCEDURES FOR NON-PESTICIDE ORGANIC COMPOUNDS—Continued

		T	I-	• •	· .		-1100 G
			.EP	A Method A	fumber *LT		
	Financial C		GCARS	HPLC	Standard methods 17th Ed.	MTEA	Other
				1			·
Z	7. Ohlondoom	100	. 624, 1624		6210 B, 6230 B	1.	Hate, p. 130.
	d. Chloromethene	601	624, 1624		6210 8. 6230 8		
2	2. 2-Chloronephthelene	612	625, 1625	-	6410 B	}	
	J. 2-Chlorophenol	604	625, 1625		6410 B, 8420 B	1	
3	1. 4-Chlocophenylotheryl ether	611	625, 1625	-	6410 B		
27	2. Observed Manuference	. 610	025, 1625	610	6410 B, 6440 B	D4657-67	
		610	075, 1625	1 33333333		D4657-87	
3	Dibromochloromethene	60t	624, 1624	1	6210 B, 6230 B	0 1031-01	1 .
35	5. 1, 2-Dichloroberizene	601,602,612	624,625,1625		6410 B, 6230 B,	1	1
	5. 1, 3-Dichlorobenzene	601,602,612	624,625,1625		6220 B 6410 B, 6230 B;		
37	. 1, 4-Dichlorobenzene	601,602,612	625,1624,1625		6220 B 6410 B, 6230 B		
38	I. 3, 3-Dichloroberzidine			205	62208		
39	. Dichlorodifluoromethene	601	625, 1625	605			
40	1, 1-Olchloroetherie	100	624, 1624	1	6230 B	12	
41	. 1, 2-Dichloroethene	601		1	6230 B. 6210 B		
12	1, 1-Dichloroethene	601	624, 1624		6230 8, 6210 8		1
43	Irans-1, 2-Dichloroethens	601	624, 1624	-	6230 B, 6210 B		
41	2, 4-Dichlorophenol.	100000000000000000000000000000000000000	624, 1624		6230 B, 6210 B		1
45	. 1, 2-Dichloropropene	604	625, 1625		6420 8, 6410 8	,	. *
48	cis-1, 3-Oichloropropene	601	624, 1624		6230 B, 6210 B		1
47	. Inine-1, 3-Dichloropropene	001	624, 1624		6230 B, 6210 B		
48	Dietryl phthelete *	501	624, 1624		6230 B, 6210 B		
40	2, 4-O/methylphenol	606	625, 1625		6410 B		1,30
50	. Diroethyl phthelate	604	625, 1625		6420 B, 6410 B		
51	Din-butyl phthelete	606	625, 1625	<u> </u>	6410 B	•	
52	Dia actid physicals	600	625, 1625		6410 B		
57	Di-n-octyl phtheliate	.606	625, 1625		6410 B		
53	2.4 District	. 604	625, 1625	<u> </u>	6420 B, 6410 B		
CF.	2, 4-Dinitotoluene	609	625, 1625		6410 B · ·		
ER	2, 6-Dinkrotoluene	608	625, 1625		6410 8		
50	. Epichlorohyddin						Note 3, p.130 Hote
57	Ethylberme						6, p.S102
58.	Fluoranthe	. 602	624, 1624		6220 B, 6210 B		
59.	Fluoranthe	610	625, 1625	610		D4657-87	
60	H-machloroberarena	610	625, 1625	610		D4657-87	
61.	Hexactilorobutadiene	612	625, 1625		6410 8		
62	Hexachlorocyclopentadiene	612	625, 1625		6410 B		
67	Hexachloroethene	612	625, 1625		6410 B		
84	Ideno (1,23-od)pyrene	616	625, 1625		6410 B .		
65	leophorone	610	623, 1625	610		D4657-87 ·	
	Methylene chloride	602	625, 1625		6410 B		
67	2-Methyl-L8-distrophenol	601	624, 1624		6230 B .		Note 3, p. 133.
68	Hephthelene	604	625, 1625		6420 B, 6410 B		1
60	Mitrobenezene	610	625, 1625	610	6410 B, 6440 B		
70	2-Nitrophenol	609	625, 1625		6410 B . '	D4657-67	
71	4-Hitrophenol	604	625, 1625		6410 B, 6420 B		
72	H-Nitrosodimethylamins	604	625, 1625		6410 B, 6420 B		
77	M-Hidrosodi-n-propylernicis .	607	625, 1625		6410 8 .		
74	N-Mitrosocipheryternine	607	·4625, 1625		6410 B		
75	2.2-Oxybis(1-ct/oropropens)	. 607	*625, 1625		6410 B		
78	PC8-1016	611	625, 1625		6410 B		
77	PC8-1221	608	625		6410 B		Plote 3, p.43
78	PC8-1232 · · · · · · · · · · · · · · · · · ·	608	625		6410 B		Plote 3, p.43
70	PC8-1242	600	625		6410 8		Note 3, p.43
	DOG 4040	608	. 625		6410 B		Hote 3, p.43
80	PCB=1748	606	625				
80.	PCB-1248 PCB-1254	1	625		6410 B		Note 2, p.43
80. 81.	PC8-1254	808					
80. 81. 82.	PCB-1254 PCB-1260	608	625		6410 B, 6630 B		Note 3, p.43.
80. 81. 82. 63.	PC8-1254	604	625 625, 1625		6410 B, 6630 B		Note 3, p.43, Note 2, p.140.
80. 81. 82. 83.	PC8-1254 PC8-1260 Pentachlorophenol Phenesthrene	60d 604 610	625 625, 1625 625, 1625	610	6410 B, 6630 B 6410 B, 6440 B	D4657-87	
80. 81. 82. 63. 84. 85.	PC8-1254	604 610 604	625 625, 1625 625, 1625 625, 1625		6410 B, 6630 B 6410 B, 6440 B 6420 B, 6410 B	•	
80, 81, 82, 83, 84, 85,	PC8-1254	60d 604 610	625 625, 1625 625, 1625 625, 1625 625, 1625	610	6410 B, 6630 B 6410 B, 6440 B	D4657-87 D4657-87	
80. 81. 82. 83. 84. 85. 86.	PC8-1254 PC8-1250 Pentschlorophenol Phenenthrene Phenol Pyrene 2.3.7.5-1etrachlorophenosbertzo-o-skrivia	605 604 610 604 610	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 613		6410 B, 6630 B 6410 B, 6440 B 6420 B, 6440 B 6410 B, 6440 B	•	Note 2, p.140.
80. 81. 82. 63. 85. 85. 85.	PC8-1254 PC8-1260 PC8-1260 Pentachlorophenol Phenenthrene Phenol Pyrene 23,7,8-Tetrachlorosiberizo-p-dioxin 1,1,2,2-Tetrachlorosiberizo-p-dioxin Phenol Phenol Phenol Pyrene Pentachlorosiberizo-p-dioxin Phenol Pyrene Pentachlorosiberizo-p-dioxin Phenol Pyrene Pentachlorosiberizo-p-dioxin Phenol Pyrene P	608 604 610 604 610	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 613 624, 1624		6410 B, 6630 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B	•	Note 2, p.140.
80. 81. 82. 83. 85. 85. 85. 85.	PC8-1254 PC8-1260 Pentachlorophenol Phenenthrene Phenol Pyrene 2.3,7,8-Tetrachlorodberzo-p-dioxin 1,1,2,2-Tetrachloroethene Tetrachloroethene	604 610 604 610 604 610	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 ~ 613 624, 1624 624, 1624		6410 B, 6630 B 6410 B, 6440 B 6420 B, 6440 B 6410 B, 6440 B	•	Note 2, p.140.
80. 81. 82. 83. 85. 86. 87. 88.	PC8-1254 PC8-1250 PC8-1250 Pentachlorophenol Phenosthrene Phenol	604 604 610 604 610 601 601 601	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 613 624, 1624 624, 1624 624, 1624		6410 B, 6630 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B	•	Note 3, p.140. Note 3, p.130. Hote 3, p.130.
80. 81. 82. 83. 85. 85. 85. 87. 89.	PC8-1254 PC8-1250 Pentachlorophenol Phenenthrene Phenol Phyrene 2.3.7.5-Tetrachlorodiberzo-p-diodn 1.1.2.2-Tetrachloroethene Tetrachloroethene Toluene 1.2.4-Trichloroberzone	604 610 604 610 601 601 601 602 612	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 613 624, 1624 624, 1624 624, 1624 624, 1624		6410 B, 6500 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B 6200 B, 6210 B 6200 B, 6210 B	•	Note 2, p.140.
80, 81, 82, 83, 85, 85, 85, 87, 89, 91,	PC8-1254 PC8-1260 Pentachlorophenol Phenenthrene Phenol Pyrene 2,17,8-Tetrachlorodberzo-p-dioxin 1,1,2,2-Tetrachlorodhene Tetrachlorodhene Toluene 1,2,4-Trichloroberzone 1,1,1-Trichloroberzone	608 604 610 604 610 601 601 601 602 612 601	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 624, 1624 624, 1624 624, 1624 624, 1624 625, 1625 624, 1624		6410 B, 6500 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B 6200 B, 6210 B 6200 B, 6210 B 6210 B, 6220 B	•	Note 3, p.140. Note 3, p.130. Note 3, p.130. Note 3, p.130.
80, 81, 82, 83, 85, 85, 85, 85, 89, 90, 91, 93,	PC8-1254 PC8-1260 Pentachlorophenol Phenenthrene Phenol Pyrene 2,3,7,8-Tetrachlorostberco-p-ofoxin 1,1,2-2-Tetrachlorosthene Tetrachlorosthene Toluene 1,2,4-Trichlorobrizene 1,1,1-Trichlorosthene 1,1,1-Trichlorosthene	604 610 604 610 601 601 601 602 612	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 613 624, 1624 624, 1624 624, 1624 624, 1624		6410 B, 6500 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B 6200 B, 6210 B 6200 B, 6210 B 6210 B, 6220 B 6410 B	•	Note 3, p.140. Note 3, p.130. Hote 3, p.130.
80, 81, 82, 84, 85, 86, 87, 88, 89, 91, 91,	PC8-1254 PC8-1260 Pentachlorophenol Phenenthrene Phenol Pyrene 2,3,7,8-Tetrachlorodiberzo-p-dioxin 1,1,2,2-Tetrachlorodiberzo-p-dioxin Tetrachloroethene Toluene 1,2,4-Trichloroberzene 1,1,1-Trichloroethene 1,1,1-Trichloroethene Trichloroethene	608 604 610 604 610 601 601 601 602 612 601	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 624, 1624 624, 1624 624, 1624 624, 1624 625, 1625 624, 1624		6410 B, 6500 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B 6200 B, 6210 B 6200 B, 6210 B 6210 B, 6220 B 6410 B 6210 B, 6220 B	•	Note 3, p.140. Note 3, p.130. Note 3, p.130. Note 3, p.130.
80, 81, 82, 81, 82, 85, 85, 85, 87, 88, 90, 91, 23, 4, 95, 975, 975, 975, 975, 975, 975, 975,	PC8-1254 PC8-1250 Pentachlorophenol Phenenthrene Phenol Phyrene 2.3.7,8-1etrachlorodibertzo-p-diodin 1,1.2.2-Tetrachloroethene Tetrachloroethene Toluene 1,2.4-Trichlorobertzene 1,1.1-Trichloroethene Tichloroethene Trichloroethene	608 604 610 604 610 601 601 602 612 601 601 601	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 624, 1624 624, 1624 624, 1624 625, 1625 624, 1624 625, 1624 624, 1624		6410 B, 6500 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B 6200 B, 6210 B 6200 B, 6210 B 6210 B, 6220 B 6410 B 6210 B, 6220 B 6210 B, 6200 B	•	Note 3, p.140. Note 3, p.130. Note 3, p.130. Note 3, p.130.
80. 81. 82. 83. 85. 85. 85. 87. 89. 89. 89. 89. 89. 89. 89. 89. 89. 89	PC8-1254 PC8-1260 Pentachlorophenol Phenenthrene Phenol Pyrene 2,3,7,8-Tetrachlorodiberzo-p-dioxin 1,1,2,2-Tetrachlorodiberzo-p-dioxin Tetrachloroethene Toluene 1,2,4-Trichloroberzene 1,1,1-Trichloroethene 1,1,1-Trichloroethene Trichloroethene	608 604 610 604 610 601 602 612 601 601	625, 1625 625, 1625 625, 1625 625, 1625 625, 1625 613 624, 1624 624, 1624 624, 1624 625, 1625 624, 1624 624, 1624 624, 1624 624, 1624		6410 B, 6500 B 6410 B, 6440 B 6420 B, 6410 B 6410 B, 6440 B 6200 B, 6210 B 6200 B, 6210 B 6210 B, 6220 B 6410 B 6210 B, 6220 B 6210 B, 6230 B 6210 B, 6230 B 6210 B, 6230 B	•	Note 3, p.140, Note 3, p.130, Note 3, p.130, Note 3, p.130,

I All perameters and expressed in micrograms per liker (µg/L).

* The full lext of Methods 601–613, 624, 625, 1624, and 1625, are given at Appendix A, "Test Procedures for Analysis of Organic Poliutants," of this Part 136.

The standardized test procedure to be used to determine the method detection limit (MDL) for these test procedures is given at Appendix B, "Definition and Procedure for the Deterministion of the Method Detection Limit" of this Part 136.

* "Methods for Bertzidines Chlorinated Organic Compounds, Pentachlorophenol and Pesticides in Water and Wastewater," U.S. Environmental Protection Agency, Contember 1978.

September, 1978.

September, 1978.

4 Method 624 may be extended to acreen semples for Acrolein and Acrylonitrile. However, when they are known to be present, the preferred method for these two compounds is Method 603 or Method 1624.

5 Method 625 may be extended to include beaddine, hexachlorocyclopentadiene, N-nitrosodiumethysmine, and N-nitrosodiphemytamine. However, when they are known to be present, Methods 605, 607, and 612, or Method 1625, are preferred methods for these compounds.

625, Screening only,

6 "Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency," Supplement to the Fifteenth Edition of Standard Methods for the Examination of Water and Wastewater (1961).

7 Each analyst must make an Initial, one-time demonstration of their ability to generate acceptable precision and accuracy with Methods 601–603, 624, 625, 1624, and 1625 (See Appendix A of this Part 138) in accordance with procedures each in section 8.2 of each of these Methods. Additionally, each laboratory, on and ongoing bases must spike and analyze 10% (5% for Methods 624 and 625 and 100% for Methods 1624 and 1625) of all samples to monitor and evaluate laboratory data quality in accordance with sections 8.3 and 8.4 of these Methods. When the recovery of any parameter falls outside, the warning limits, the analytical results for that parameter in the uneplaced sample are suspect and cannot be reported to demonstrate regulatory compliance.

NOTE: These warning limits are promulgated as an "Interim final action with a request for comments."

NOTE: These warning limits are promulgated as an "interim final action with a request for comments."

TABLE 1 D.—LIST OF APPROVED TEST PROCEDURES FOR PESTICIDES!

	1 .	EPA r	nethod number		
Panameter μg/L	Method	EPALI	Standard methods 17th Ed.	ASIM	Other
1. Aldrín	GC	608	6630 B & C	D3066-90	Note 3, p. 7; Note 4, p.
2. Ametryn.	GC/MS GC	625	6410 B		30. Note 3, p. 83; Note 6, p. S68.
3. Aminocarb	πο		3		Note 3, p. 94; Note 6,
4. Atraton	GC				p. S16. Note 3, p. 83; Note 6, p. S68.
5. Alrezone	GC				Note 3, p. 87; Note 6, p. S68,
6. Azinphos mediyi	GC	<u>-</u>			Note 3, p. 25; Note 6, . p. S51.
7. Berben	TLC GC	608	6630 B & C	D3086-90	Note 3, p. 104; Note 6, p. S64,
9. β-2HC	GC/MS GC	625 608	6410 B	D3066-90	Note 3, p. 7.
10, 8-BHC	GC/MS GC	625 608	6410 B 6630 C	D3086-90,	
11. y-BHC (Lindane)	GC/MS GC	625 608	6410 B 6630 B & C	D5066-93	Note 3, p. 7; Note 4, p.
12. Capteri	GC/MS GC	625	6410 B 6830 B	D3066-90	30. Note 3, p. 7.
13. Carbryl	TLC		,		Note 3, p. 94; Note 6, . p. S60.
15. Chlordane	GC .	ena.	6630 B & C	D3066-90	Note 4, p. 30; Note 6, p. 573. Note 3, p. 7.
16. Chloropropherm	GC-MS TLC	625	6410 8	20000	Note 3, p. 104; Note 6,
17. 2.4-0	GC		6840 B		p. S64. Note 3, p. 115; Note 4,
18. 4,4'-D-000	GC	608	O & B 0009	D3096-90 ·	p. 35. Note 3, p. 7; Note 4, p. 30.
19. 4.4°-CCE	GC-MS GC	625 608	64108 6630 B & C	D3086-90	Note 3, p. 7; Note 4, p.
29. 4,4"-00T	GC-MS GC	625	6410 B 6630 B & C	D306/5-90	30. Note 3, p. 7; Note 4, p.
21, Demeton-O	GC-MS	625	6410 B		30.
22. Demention—S	GC			¥°	Note 3, p. 25; Note 6, p. S51. Note 3, p. 25; Note 6,
23. Diazinon	GC				p. S51. Note 3, p. 25; Note 4,
24. Dicamba	GC	.			p. 30; Note 6, p. S51, Note 3, p. 115.
25. Dichlorenthion	GC .				Note 4, p. 30; Note 6, p. S73.
25. Dichloren	GC GC		6630 B & C	D3036-90	Note 3, p. 7.
	GC	608	6630 B & C		Note 3, p. 7; Note 4, p. 30,

TABLE 1 D.—LIST OF APPROVED TEST PROCEDURES FOR PESTICIDES 1—Continued

*	1	EPA r	nethod number		
Panemeter μg/L	Mathod	EEA.	Standard methods 17th Ed.	ASTM	Other
29. Diaxittion	GC-MS GC	625	6410 B		Note 4, p. 30; Note 6,
W. Disulfation	GC .	-	ĺ.		p. S7J. Hota J. p. 25; Hote 6.
31, Diuron	TIC				p. S51. Hote 3, p. 104; Note 6,
32, Endosultan I	GC .	608	6630 B & C	D0000-00	p. S64. Note 3, p. 7.
33. Endoquitan N	GC-MS GC	608	6410 B 6630 B & C	D3006-90	Hote 3, p. 7.
34 Endosullan Sullate	GC-MS	603	6410 B 6630 C		2.100
35. End/fg	GC-MS GC	625	6410 B 6630 B & C	D30Y5-90	Note 3, p. 7; Note 4, p
	GC-MS	*625	6410 B		30.
iS, Endrin aldehyde	GC	GC	608		Hote 4, p. 30; Hote 6,
3. Fenuron	TLC				p. 573. Note 3, p. 104; Note 6
19. Fenuron-TCA	TLC	·			p. S64. Note 3, p. 104; Note 6
9. Heptachlor	_ GC	608	6630 B & C	D3006-00 .	p. S64, Note 3, p. 7; Note 4, p
v	GC/MS	625	6410 B		30.
1. Heptschlor epoxide	_ GC	608	6630 B & C	D30003-00	Note 3, p. 7; Note 4, p 30; Note 6, p. S73.
2. Isodrin	GC/MS GC	625	6410 b		Note 4, p. 30; Note 6,
3. Unuron	GC				p. 573. Note 3, p. 104; Note 6
4. Malatrion	GC		6630 C		p. S64. Note 3, p. 25; Note 4.
· 1. 1	·.				p. 30; Nota 6, p. S51.
5. Methiccurb	TIC		.]		Note 3, p. 94; Note 6, p. 560.
6. Methacychlor	GC .	-	. 6630 B & C	D3096-90	Note 3, p. 7; Note 4, 90.
7. Mecacarbeta	TLC				Note 3, p. 94; Note 6, p. S60.
8. Minex	GC TLC		6630 B & C		Hote 3, p. 7. Note 3, p. 104; Hote
O. Monuron	TLC				p. S64. Hote 3, p. 104; Note
1. Nuburon	TLC				p. S64. Note 3, p. 104; Note (
2. Perathion methyl	GC		6630 C		p. \$64. Note 3, p. 25; Note 4,
I. Parathion ethyl	GC		6630 C		p. 30. Note 3, p. 25.
4. PCNB	GC .		6630 B & C	D3066-60	Note 3, p. 7.
6. Prometron	GC		-		Note 3, p. 83; Note 6 p. S68.
7. Ртотавуп	GC		-		Note 3, p. 63; Note 6 p. 568.
8, Propezioa	GC		-		Note 3, p. 83; Note 6 p. \$68.
9. Proptiem	TLC .				p. S64.
. Proposur	TLC .		-		Note 3, p. 94; Note 6, p. S60.
1. Sectioneton	TLC		-		Note 3, p. 83; Note 6, p. \$68.
2. Schron	TLC		-		Note 3, p. 104; Note p. S64.
II, Sinazina	GC		-		Note 1, p. 83; Note 6 p. S68.
S4. StrobaneS5. Swep	GC TLC		. 6630 B & C		Note 3, p. 7. Note 3, p. 104; Note
56. 2,4,5-T			6640 B		p. S64. Note 3, p. 115; Note
				T.	p. 35.

TABLE 1 D.—LIST OF APPROVED TEST PROCEDURES FOR PESTICIOES 1—Continued

	EPA method number				
Parameter μgrL	Медюд	EPA*1	Standard methods 17th Ed.	ASTM	Other
S8. Terbudylezing	GC				Note 3, p. 83; Note 6,
9. Toksohena	GC	608	6630 B & C	03066-90	p. \$68. Note 3, p. 7; Note 4, p
O, Tethucilin	GC/MS GC	625	6410 B 6630 B		30. Note 3, p. 7, .

Table 1D Motive:

1 Pesticides are listed in this table by common necta for the convenience of the reader, Additional pesticides may be found under Table 1C, where entries are Ested by chemical pen

Asset by Cherrical parties.

If The full lead of Methods 508 and 625 are given at appendix A. "Test Procedures for Analysis of Organic Pollutants," of this pect 106. The standardized lest procedure to be used to detection in the method detection limit (MDL) for these test procedures is given at appendix B. "Definition and Procedure for the Determination of the Instant Procedure of the Determination."

procedure to be used to determine the method detection faint (MDL) for these test procedure is given at appendix B. "Definition and Procedure for the Determination of the Method Detection Limit", of this part 13d, "Methods for Berziche, Chlorinated Organic Competenda, Pentachlorophenol and Peaticides in Water and Wastewater," U.S. Environmental Protection Agency, 1978, This EPA publication includes this layer chromatography (TUC) methods.

4 "Methods for Analysis of Organic Substances in Water and Ekrail Sediments," Techniques of Water-Resources Investigations of the U.S. Geological Survey, Rook 6 Chamber A1 (1987).

The method may be extended to include α-BHC, 8-BHC, endosultan I, endosultan II, and endxin, However, when they are known to exist, Method 608 is the

Tolescool Analytical Methods Approved and Cited by the United States Environmental Protection Agency," Supplement to the Fitteenth Edition of Standard

Methods for the Econometion of Water and Wastewater (1981).

Methods for the transmission of Water and Wasterwater (1981),

Yeach analyst wast make an initial, one-time, demonstration of their ability to generate acceptable precision and accuracy with Methods 606 and 625 (See appearant A of this part 136) in accordance with procedures given in section 8.2 of each of these methods. Additionally, each laboratory, on an on-going basis, must appear and analyze 60% of all samples analyzed with Method 606 or 5% of all samples analyzed with Method 625 to monitor and evaluate laboratory data quality in accordance with Sections 8.3 and 8.4 of these methods. When the recovery of any personeter falls outside the warning finits, the straightful methods for that parameter is the control and accordance and cannot be constant to describe according. These results control requirements also and to the Standard at the unspired sample are suspect and cannot be reported to demonstrate regulatory compliance. These quality control requirements also apply to the Standard Methods, ASTM Methods, and other Methods ofted.

Note: These warning limits are promulgated as an "Interim final action with a request for comments."

TABLE IE.—LIST OF APPROVED RADIOLOGICAL TEST PROCEDURES

Parameter and units	Method		Reference (method number or page)			
		EPA 1	Standard methods 17th Ed.	ASTM	USGS*	
1. Alpha-Total, pCl per liter 2. Alpha-Counking error, pCl per liter 3. Beta-Total, pCl per 4. Beta-Counting error, pCl 5. (a) Radiutt Total pCl per liter (b) I erra, pCl per liter	Proportional or scintillation counter		703 703 703 703 705 705	D1943-81 D1943-81 D1890-81 D1890-81 D2460-70 D3454-79	pp. 75 and 78.3 p. 79. pp. 75 and 78.3 p. 79.	

* Prescribed Procedures for Measurement of Redioactivity in Drinking Water," EPA-600/4-80-032 (1980), U.S. Environmental Protection Agency, August 1980, Fishmen, M.J. and Brown, Eugene, "Selected Methods of the U.S. Geological Survey of Analysis of Westewaters," U.S. Geological Survey, Open-File Report

TOTAL BIRD MALL BIRD DIVING ENGINE, SPECIAL MALL BIRD BLOWN, SPECIAL MALL BIRD BLOWN, SPECIAL MALL BIRD BLOWN, SPECIAL MALL BIRD BLOWN, SPECIAL BLOWN, SPECI

(b) The full texts of the methods from the following references which are cited in Tables IA, IB, IC, ID, and IE are Incorporated by reference into this regulation and may be obtained from the sources identified. All costs cited are subject to change and must be verified from the indicated sources. The full texts of all the test procedures cited are available for inspection at the Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency. 26 West Martin Luther King Dr., Cincinnati, OH 45268 and the Office of the Federal Register. room 8301. 1THO L Street, NW. Washington, DC 20408.

References, Sources, Corts, and Table Citations

(1) The full text of Methods 601-613. 824, 825, 1624, and 1625 are printed in appendix A of this part 136. The full text for determining the method detection. limit when using the test procedures is given in appendix B of this part 136. The full text of Method 200.7 is printed in appendix C of this part 138. Cited in: Table IB. Note 5; Table IC, Note 2: and Tuble ID. Note 2.

(2) "Microbiological Methods for Monitoring the Environment, Water and Wastes," U.S. Environmental Protection Agency, EPA-600/8-78-017, 1978. Available from: ORD Publications. CERI, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268. Table IA, Note 2.

(3) "Methods for Chemical Analysis of Water and Wastes," U.S. Environmental Protection Agency, EPA-600/4-79-020. March 1979, or "Methods for Chemical ·Analysis of Water and Wastes," U.S. Environmental Protection Agency, EPA-600/4-79-020, Revised March 1983. Available from: ORD Publications. CERL, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Table IB, Note 1.

(4) "Methods for Benzidine. Chlorinated Organic Compounds. Pentachlorophenol and Pesticides in Water and Wastewater," U.S. Environmental Protection Agency, 1978. Available from: ORD Publications. CERL U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Table IC. Note 3: Table D. Note 3.

- (5) "Prescribed Procedures for Measurement of Radioactivity In Drinking Water," U.S. Environmental Protection Agency, EPA-800/4-80-032, 1980. Available from ID Publications. CERL U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, Table IE, Note 1.
- (8) "Standard Methods for the Examination of Water and Wastewater." Joint Editorial Board. American Public Health Association, American Water Works Association, and Water Pollution Control Federation, 17th Edition, 1989. Available from: American Public Health Association, 1015 Fifteenth Street, NW., Washington, DC 20038. Cost: \$90.00. Tables IA, IB,
- (7) Ibid, 15th Edition, 1980. Table IB, Note 30; Table ID.
- (8) Ibid, 14th Edition, 1975, Table IB, Notes 17 and 27.

(9) Ibid, 13th Edition, 1971. Table IB. Note 31.

(10) "Selected Analytical Methods Approved and Cited by the United States Environmental Protection Agency," Supplement to the 15th Edition of Standard Methods for the Examination of Water and Wastewater, 1981. Available from: American Public Health Association, 1015 Fifteenth Street NW., Washington, DC 20036. Cost available from publisher. Table IB, Note 10: Table IC. Note 8; Table ID, Note 6.

(11) "Annual Book of Standards-Water." Section 11, Parts 11.01 and 11.02, American Society for Testing and Materials, 1991. 1916 Race Street. Philadelphia, PA 19103. Cost available from publisher. Tables IB. IC, ID, and IE.

(12) "Methods for Collection and Analysis of Aquatic Biological and Microbiological Samples," edited by Britton, L.J. and P.E. Greason, Techniques of Water Resources Investigations, of the U.S. Geological Survey, Book 5, Chapter A4 (1989). Available from: U.S. Geological Survey. Denver Federal Center, Box 25425, Denver, CO 80225. Cost: \$9.25 (subject to change]. Table IA.

(13) "Methods for Determination of Inorganic Substances in Water and Fluvial Sediments," by M.J. Fishman and Linda C. Friedman, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5 Chapter A1 (1989). Available from: U.S. Geological Survey, Denver Federal Center, Box 25425, Denver, CO 80225. Cost: \$108.75 (subject to change). Table

IB. Note 2.

(14) "Methods for Determination of Inorganic Substances in Water and Fluvial Sediments." N.W. Skougstad and others, editors. Techniques of Water-Resources Investigations of the U.S.

Geological Survey, Book 5, Chapter A1 (1979). Available from: U.S. Geological Survey, Denver Federal Center, Box 25425, Denver, CO 80225. Cost: \$10.00 (subject to change), Table IB, Note 8.

(15) "Methods for the Determination of Organic Substances in Water and Fluvial Sediments," Wershaw, R.L., et al, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 5, Chapter A3 (1987). Available from: U.S. Geological Survey, Denver Federal Center, Box 25425. Denver, CO 80225. Cost: \$0.90 (subject to change). Table IB, Note 24: Table ID. Note 4.

(16) "Water Temperature—Influential Factors. Field Measurement and Data Presentation," by H.H. Stevens, Jr., I. Ficke, and G.F. Smoot, Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 1, Chapter D1, 1975. Available from: U.S. Geological Survey, Denver Federal Center, Box 25425, Denver, CO 80225. Cost: \$1.60 (subject to change). Table IB.

(17) "Selected Methods of the U.S. Geological Survey of Analysis of Wastewaters," by M.J. Fishman and Eugene Brown: U.S. Geological Survey Open File Report 76-77 (1976). Available from: U.S. Geological Survey, Branch of Distribution, 1200 South Eads Street, Arlington, VA 22202. Cost: \$13.50 (subject to change). Table IE, Note 2.

(18) "Official Methods of Analysis of the Association of Official Analytical Chemicals", Methods manual, 15th Edition (1990). Price: \$240.00. Available from: The Association of Official Analytical Chemists, 2200 Wilson Boulevard, Suite 400, Arlington, VA 22201. Table IB, Note 3.

(19) "American National Standard on Photographic Processing Effluents." April 2, 1975. Available from: American National Standards Institute, 1430 Broadway, New York, New York 10018. Table IB, Note 9:

(20) "An Investigation of Improved Procedures for Measurement of Mill Effluent and Receiving Water Color." NCASI Technical Bulletin No. 253, December 1971. Available from: National Council of the Paper Industry for Air and Stream Improvements, Inc., 260 Madison Avenue, New York, NY 10016. Cost available from publisher. Table IB, Note 18.

(21) Ammonia, Automated Electrode Method, Industrial Method Number 379-75WE, dated February 19, 1978. Technicon Auto Analyzer II. Method and price available from Technicon Industrial Systems, Tarrytown, New York 10591. Table IB, Note 7.

(22) Chemical Oxygen Demand. Method 8000, Hach Handbook of Water Analysis, 1979. Method price available from Hach Chemical Company, P.O. Box 389, Loveland, Colorado 80537. Table IB. Note 14..

(23) OIC Chemical Oxygen Demand Method, 1978. Method and price available from Oceanography International Corporation, 512 West Loop, P.O. Box 2980, College Station. Texas 77840. Table IB, Note 13.

(24) ORION Research Instruction Manual, Residual Chlorine Electrode Model 97-70, 1977. Method and price available from ORION Research Incorporation, 840 Memorial Drive. Cambridge, Massachusetts 02138. Table IB, Note 16.

(25) Bicinchoninate Method for Copper. Method 8508, Hach Handbook of Water Analysis, 1979, Method and price available from Hach Chemical Company, P.O. Box 300, Loveland, Colorado 80537. Table IB, Note 19.

(26) Hydrogen Ion (pH) Automated Electrode Method, Industrial Methods Number 378-75WA. October 1976. Bran & Luebbe (Technicon) Auto Analyzer II. Method and price available from Bran & Luebbe Analyzing Technologies. Inc. Elmsford, N.Y. 10523. Table IB, Note 21.

(27) 1.10-Phenanthroline Method using FerroVer Iron Reagent for Water, Hach Method 8008, 1980. Method and price available from Hach Chemical Company, P.O. Box 389 Loveland, Colorado 80537. Table IB, Note 22.

(28) Periodate Oxidation Method for Manganese, Method 8034, Hach Handbook for Water Analysis, 1979. Method and price available from Hach Chemical Company, P.O. Box 389, Loveland, Colorado 80537. Table IB, Note 23.

(29) Nitrogen, Nitrite-Low Range, Diazotization Method for Water and Wastewater, Hach Method 8507, 1979. Method and price available from Hach Chemical Company, P.O. Box 389, Loveland, Colorado 80537. Table IB, Note 25.

(30) Zincon Method for Zinc, Method 8009. Hach Handbook for Water Analysis, 1979. Method and price available from Hach Chemical Company, P.O. Box 389, Loveland, Colorado 80537. Table IB, Note 33.

(31) "Direct Determination of Elemental Phosphorus by Gas-Liquid Chromatography." by R.F. Addison and R.G. Ackman, Journal of Chromatography, Volume 47, No. 3, pp. 421-426, 1970. Available in most public libraries. Back volumes of the Journal of Chromatography are available from Elsevier/North-Holland, Inc., Journal Information Centre, 52 Vanderbilt Avenue, New York, NY 10164. Cost

available from publisher. Table III, Note

(32) "Direct Current Plasma (DCP)
Optical Emission Spectrometric Method
for Trace Elemental Analysis of Water
and Wastes, Method AESOCIA," 1988,
revised 1991, (with approxim), Applied
Research Laboratories, Inc., 24911
Avenue Starford, Valencia, CA 81355.
Table IB, Note 34.

(c) Under rectoria circumstances the Regional Administrator on the Director in the Region or State where the discharge will occur may determine for a particular discharge that additional parameters or pollutants anost be reported. Under such circumstances, additional test procedures for analysis of pollutants may be specified by the Regional Administrator, or the Director upon the recommendation of the Director of the Environmental

Monitoring Systems Laboratory— Cincinnati.

(d) Under certain circumstances, the Administrator may approve, apourecommendation by the Director, Environmental Monitoring Systems Laboratory—Cincinnati, additional alternate test procedures for nationwide use.

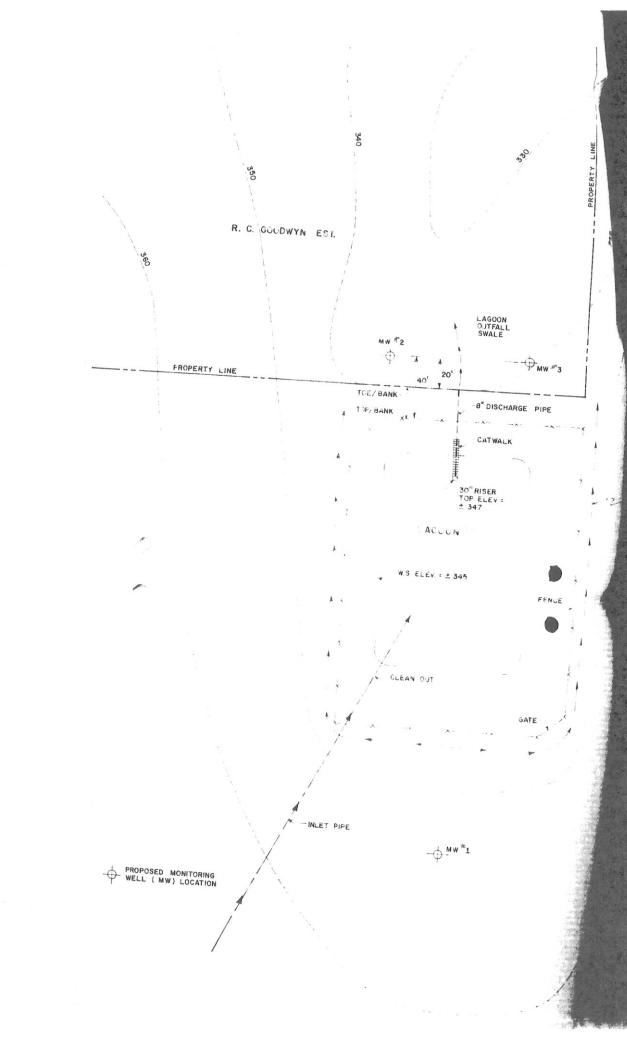
(e) Sample preservation procedures, container materials, and maximum allowable holding times for parameters cited in Tables IA, IB, IC, ID, and IE are prescribed in Table II. Any person may apply for a variance from the prescribed preservation techniques, container materials, and maximum holding times applicable to samples taken from a specific discharge. Applications for variances may be made by letters to the Regional Administrator in the Region in which the discharge will occur.

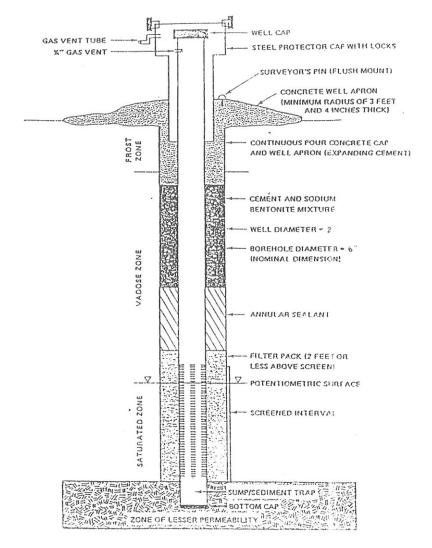
Sufficient data should be provided to assure such variance does not adversely affect the integrity of the sample. Such data will be forwarded, by the Regional Administrator, to the Director of the Environmental Monitoring Systems Laboratory-Cincinnati, Ohio for technical review and recommendations for action on the variance application. Upon receipt of the recommendations from the Director of the Environmental Monitoring Systems Laboratory, the Regional Administrator may grant a variance applicable to the specific charge to the applicant. A decision to approve or deay a variance will be made within 90 days of receipt of the application by the Regional Administrator.

[FR Doc. 91-23215 Filed 10-7-91; 8:45 am]

Date: () ne 28, 1991 Page: 22 of 38

Table 3. Analytical Parameters, Preservation and Holding Times


HATRIX' -- WATER


Pg. Sam		Volume		Recommend Container		Preservation	Holding Time
	e(3) AHALYTICAL PARAMETE		(1)	(2)	(*)	.(2)	(2) -
	=======================================			=======			
	HOM-HETALS LABORATO	RY					
	Acidity	100 ml.	sm402	P,G	Cool 4°C		14 d.
	Alkalinity	100 ml.	sm403	P,G	Cool 4°C.		14 d.
	800 5	1000 m(.	sin507	P,G	Cool 4°C.		48 h.
	Carbonaceous 800 5	1000 ml.	sm507(5.e.6)	P,G	Cool 4°C.		48 h.
CBP	coo .	50 m(.	a-0-1252-83	P,G	Cool 4°C	+ H2SO4 to pH<2	28 d.
	8 romate	25 ml.	300.0	P,G	Cool 4°C.		28 d.
	Bromide .	25 mi.	300.0	P,G	Cool 4°C.	CK.	28 d.
	Chlorate	25 ml.	300.0	P,G	Cool 4°C.		28 d.
	Chloride	25 ml.	300.0 (v)	P,G	Cool 4°C.		28 d.
	Chloride	100 ml.	sm407B	P,G	Cool 4°C.	•	28 d.
Gr	Chlorine	F	sm408E	P,G	None		A I
	Chlorite	25 ml.	300.0	P,G	Cool 4°C.		1 A
	Color (Platinum Cobalt)	500 ml.	sm204A	P,G	Cool 4°C.		48 h.
	Color (ADHI)	500 ml.	sm2040	P,G	cool 4°C.		· 48 h.
	Conductivity	٠ ٤	sm205	P,G	Cool 4°C.	•	28 d.
gr	Cyanates	500 ml.	sm412K	P,G .	Cool 4°C.	, NaOH to pH>12	14 d.
Gr	Cyanide, Total	2x 1000 ml.	sm4120	P,G	Cool 4°C.	, NaOH to pH>12,	14 d.
	*	*		84	+ 0.6 g	. Ascorbic acid (7)	
	Cyanide, Free	2x 1000 ml.	sm412H	P,G	Cool 4°C.	, NaOH to pH>12	14 d.
G٢	Cyanide, amenable to	2x 1000 ml.	sm412F	P,G	Cool 4°C.	, NaOH to pH>12,	14 d.
	chlorination		•		+ 0.6 g	. Ascorbic acid (7)	
	Dissolved oxygen, probe	F	360.1	G	None		IA
gr	Dissolved oxygen, Winkle	r 300 ml.	360.2	G		6, then 2 ml alkaline	8 h.
	and the second				iodide-az	ide, store in dark	
	Fluoride .	500 ml.	sm4138	P	Cool 4°C.		28 d.
	Hardness - EDTA Titr. (9		sm3148	P,G		, H2SO4 to pH≺2	6 M.
	Oil and Grease	1000 ml.	sm503A	G,T(11)		, HCl or H2SO4 to pH<2	28 d.
	PH	, F	sm423	P,G	Hone		Αſ
	Phenols, Total (5)	2x 1000 ml.	420.1	G,T(11)		+ H2SO4 to pH≺2	28 d.
	Salinity .	F	sm210A	P,G	Cool 4°C.	•	28 d.
	Solids, total dissolved	Market College S	#1-1750-84	P,G	Cool 4°C.	3-Î	48 h.
	Solids, total suspended		s1-3765-84	P,G	Cool 4°C.		7 d.
	Solids, total		11-3750-84	P,G	Cool 4°C.		7 d.
	Solids, fixed & volatile	100 ml.	160.4	P,G	Cool 4°C.		48 h.
	Solids, settlemble Sulfate	1000 ml.	sm209A	P,G	Cool 4°C.	P	48 h.
	Sulfide	100 ml.	300.0 (v)	P,G	Cool 4°C.	/O drapt 24 7040 col	28 d.
gr	sucrice	1000 ml.	sm4270	P,G	ACCORDERATE DE PERSONALE	, 40 drops 2N ZnAc sol.	7 d.
	cultida .	-		0.0		OH to pH>9.	4.5
	Sulfide	F		P,G	None		1 A
	Sulfite	100 ml.	377.1	P,G	Hone		. AI
	Surfactants - KBAS	250 ml.	425.1	P,G ·	Cool 4°C.		48 h.
	Temperature	F	170.1	- n.c	None	11700/ 00 01/7	11
	Total organic carbon	50 mL	sm5058	P,G		+ H2SO4 to pH≺2	28 d.
	Turbidity	100 m(.	sm214A	P,G	Cool 4°C.		48 h.
Τ =	Teflon cap liner	v z vari	ance to method		Gc = Gcab	Samples are required.	
	Polyethylene		yze immediately			'samples are recommende	d
	Glass		yze immediately H adjustment fo		31 - dt 00	July Co die Tecometae	
4	Field procedure	0.550				ТВЗРСНТ1	٠.
F =	FIELD DEOCECNIES	Chad	apeake Bay Progi	r am			

Date: ne 28, 1991 Page: 24 of 38

Table 3. Analytical Parameters, Preservation and Holding Times

		MATRIX WATE	R				•
	Po	3. 3	•	Analytica	l Recommend		**
		emple z-	Volume	Hethod			
		pe(3) ANALYTICAL PARAMETERS	Required		(2)	r reservation	Holding Time
					(2)	(2)	(2)
		HUTRIENTS LABORATOR				(2)	
		Ammonfa		750			
		Total Kjeldahl nitrogen	50 m(_			Cool 4°C + HZSO4 to pH<2	28 d.
		Mitrate	50 ml.			Cool 4°C + HZSO4 to pH <z .<="" td=""><td>28 d.</td></z>	28 d.
		Nitrate + nitrite	25 .ml.		,	Cool 4°C.	48 h.
		Mitrite	25 ml.	353.2	,	Cool 4°C + H2SO4 to pH<2	28 d.
		Organic nitrogen	25 ml. NRR:	353.2	•	Cool 4°C.	48 h.
		Phosphate, Ortho-		sm420A	•	Cool 4°C + H2SO4 to pH<2	48 h.
		Phosphorus, Total	25 ml.	365.1	*0	Filter, Cool 4°C.	48 h.
		Phosphorus, Total, low leve	50 ml.	365.4	•	Cool 4°C + H2SO4 to pH-2 .	28 d.
		Silica, dissolved		365.4	•	Cool 4°C + H2SO4 to pH<2	28 d.
_		sicica, dissolved	25 m(.	sm425C	P	Cool 4°C.	28 d.
		MICROBIOLOGY LABORAT	Onv				
	G٢	P 1 114 1		200			
	Gr	St. Comp. Section Company Comp.	100 ml. 100 ml.	sm908c	P,G(8)	Cool 4°C., 0.008% Na2S203, (6)	6h./30 h.(C)
		Total collform-MPN	100 mt.	sm909c	P,G(8)	Cool 4°C., 0.008% Na2S203, (6)	6h./30 h.(C)
		The south of the first	TOO Mt.	sm708a	P,G(8)	Cool 4°C., 0.008% Ma2S203, (6)	6h./30 h.(C)
							-
		MATRIX WATER					
	222			PRIOR		L L U T A H T S	•
		VOLATILE (PURGEABLE)	ORGANIC	COMPOUNDS /DE	TROI EIM LARGE		22222222222
	gr	Purgeable Organic Compounds	2x40 ml	624			
		Trip blank required.	ELTO MIC	024	G (T)	Cool 4°C., 0.008% Na2S203, (6)	14 d.
	gr	Purgeable Aromatic Compounds	2x40 ml	624	G (T)	Cool /20 All wat	
		Trip blank required.	Dirio mi		a (1)	Cool 4°C., Add HCt to pH<2,	14 d.
•	gr	Petroleum Identification	250 ml	DCLS3-426	CIANTA	0.008% Na2S203, (6)	14 d.
		and quantification	230 HIC	00023-420	G(A)(T)	Cool 4°C., Add HCL to pH<2,	14 d.
			+ 40 ml	SW8021	C (T)	and 0.008% Na2S203, (6)	
				rep \$V\$030)	G (T)	Cool 4°C., Add HCl to pH<2,	14 d.
	gr	Petroleum Identification	40 ml	(eb 243030)	G (T)	and 0.008% Na2S203, (6)	
		(pure product)	40 MI		G (1)	Cool 4°C	14 d.
	gr	Total Petroleum Hydrocarbons	1 L.	418.1	C(13(T)	0 1 /00 0 000	•
	-	Glycol			G(A)(T)	Cool 4°C., 0.008% Na2S203, (6)	14 d.
			100 ml	DCLS3-479	G (T) .	none required	Undeter. (S)
		EXTRACTABLE ORGANICS	ADODATOD	~			
		Base/Neutrals and Acids	2x 1 L.	625	C(A)(T)	Co. 1 (20 0 000 0 0 000 0	P#1
		Tributyltin			G(A)(T) olycarbonate	Cool 4°C., 0.008% Na2S203, (6)	7 d. ·
			EA 1 6.	DCC33 400 F	orycar bonace	6000 4 6	ASAP
		PESTICIDES IN WATER LA	NEORATORY			2 73	
		Herbicides	1 L.	sm5098 ·	G (T)		- .
				3110070	4 (1)	Cool 4°C., pH 5-9, (4)	7 d.
		Pesticides	2x 1 L.	608	C (T)	Cool /20 -45 0 //2	.
			-A L.	000		Cool 4°C., pH 5-9, (4)	. 7 d.
		PESTICIDE RESIDUE LABO	PATORY		*	0.008% Wa2s203 for aldrin	
	(C1 1 1		DCLS3-134	C (T)	C-1 /20	
		· ·	EJO MC	00033-154	G (T)	Cool 4°C	Undetermined
	Gr ×	Grab Samples are required.		т.	= Telles	1:	
		Grab samples are recommended.			= Teflon cap = Glass	,	*#
		A 30 hr. holding time is perm				P = Polyethylene	
		Ambient Monitoring samples.			= amber glas:		
		have a maximum 6 hr. holding					TB3PCHT1
			4 - 1103 4		OLDE CEL III DE	ed holding time. Upda	ate: 6/28/91
		8					

NOTE MONITORING WELL DIAMETER SHALL BE MIN 2

GENERAL MONITORING WELL - CROSS SECTION

MEMORANDUM

State Water Control Board

P. O. Box 11143

Richmond, VA. 23230

SUBJECT:	Huguenot Acad	emy, Powhatan County
TO: FROM:	G. H. Whitake	
DATE:	July 15, 1977	,,,
COPIES:	BAT, File	
	S	TREAM SANITATION ANALYSIS
PROPOSED DI	SCHARGE	
Process:		
	Hydraulic Load Raw Sewage BOD5 Degree of Treatme Final Effluent BO	
RECEIVING S		
Basin: Ja	named Tributary ames River : Middle James	to Branch Creek 2-10 a
Stream Us	es (Subclass A):	Waters generally satisfactory for use as public or municipal water supply, secondary contact recreation, propagation of fish and aquatic life, and other beneficial uses.
Special	III-A Standards:	Coliform Organisms - Fecal coliforms (multiple- tube fermentation or MF count) not to exceed a log mean of 1000/100 ml. No to equal or exceed 2000/100 mg. in more than 10% of samples.
Public W	later Supply	Monthly average value not more than 5000/100 ml. (MPN or MF count). Not more than 5000 MPN/100 ml. in more than 20% of samples in any month. Not more than 20,000/100 ml. in more than 5% of such samples.
Stream Sta	andards:	
Ł	emperature 90°	mg/l Daily Average 5.0 mg/l -8.5 F Maximum Rise Above Natural.

Page 2

Comments:

Sage point occurs in the upper reaches of Branch Creek. Hence, the effect of this discharge on public water supply is negligible.

EFFLUENT LIMITS:

BOD₅ - 30 mg/l
 Suspended Solids - 30 mg/l
 D.0. - 5.0 mg/l

4. Flow - 4,000 gpd

Non-degradation policy of the Law (memo dated September 9, 1971, from LGL) was applied.

If the plant meets the above requirements, the water quality standards will be maintained.

SW -